Мотор-редуктор: устройство и назначение

Основные виды моторов-редукторов

По типу передачи выделяются следующие типы редукторов:

  • Планетарные редукторы, функционирующие за счет системы шестеренок, являются самыми надежными на сегодняшний день. Их недостатком является отсутствие разгона и торможения;

  • Червячные, действующие с помощью сцепления червячного колеса и специального винта (червяка). Они обладают плавным разгоном и хорошим торможением, но имеют низкий КПД;

  • Цилиндрические, имеющие два основных вида: соосные и плоские. Они имеют высокий коэффициент КПД, но являются очень сложными по конструкции и, как следствие,  довольно дорогими;

  • Волновые, приходящие в движение с помощью деформических волн в гибком элементе устройства. Может применятся в самых экстремальных условиях, так как обладает высокой производительностью и нечувствителен к загрязнениям.

По сфере применения редукторы бывают:

  • общемашиностроительного назначения;

  • специальные.

Первый вид редукторов является наиболее универсальным. Специальные редукторы используются в более узкой сфере (судостроение, авиация и т.д.)

Расчет вала

Условие задачи:

К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).

Требуется:

Построить эпюру крутящих моментов Мкр, подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax, построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.

Нагрузки, кН×м:

  • М1 = -4,5;
  • М2 = -2,6;
  • М3 = -3,1;
  • М4 = -2,0;

Длина участков, м:

  • l1 = 0,9;
  • l2 = 0,6;
  • l3 = 0,9;
  • l4 = 0,4;
Указания:

Вычертить схему вала в соответствии с исходными данными. Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z, минус – по часовой стрелке (см. навстречу оси Z). В дальнейшем значения моментов принимать по абсолютной величине. Участки нумеровать от опоры. Допускаемое касательное напряжение для стали принимать равным 100 МПа.

Решение:

1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала. Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.

  • МIV = -М1 = -4,5 (кН×м);
  • МIII = -М1 — М2 = -4,5 — 2,6 = -7,1 (кН×м);
  • МII = -М1 — М2 – М3 = -4,5 – 2,6 – 3,1 = -10,2 (кН×м);
  • МI = -М1 — М2 – М3 – М4 = -4,5 – 2,6 – 3,1 – 2,0 = -12,2 (кН×м).

2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):

WP≥ Мкр/ .

Так как для круглого сечения полярный момент равен: Wр = πD3/16, то можно записать:

D ≥ 3√(16Мкр/π) ≥ 3√(16×12,2×103/3,14×) = 0,0855 м или D ≥ 85,5 мм.(Здесь и далее знак «√» означает квадратный корень из выражения)

В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.

3. Определим угол закручивания для каждого участка вала по формуле:

φ = Мкр×l/G×Iр,

где G – модуль упругости 2-го рода; для стали G = 8×1010 Па;Ip – полярный момент инерции (для круглого сечения Iр = πD4/32 ≈ 0,1D4, м4). Произведение G×Iр = 8×1010×0,1×0,094 ≈ 524880 Н×м2 – жесткость сечения данного вала при кручении.

Расчитываем углы закручивания на каждом участке:

  • φI = -12,2×103×0,9/524880 = -0,0209 рад;
  • φII = -10,2×103×0,6/524880 = -0,0116 рад;
  • φIII = -7,1×103×0,9/524880 = -0,0122 рад;
  • φIV = -4,5×103×0,4/524880 = -0,0034 рад.

4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):

  • φ0-0 = 0 рад;
  • φ1-1 = φI= -0,0209 рад;
  • φ2-2 = φI + φII= -0,0209 — 0,0116 = -0,0325 рад;
  • φ3-3 = φI + φII + φIII= -0,0209 — 0,0116 — 0,0122 = -0,0447 рад;
  • φ4-4 = φI + φII + φIII + φIV = -0,0209 — 0,0116 — 0,0122 -0,0034 = -0,0481 рад.

5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:

τmax = Мкр/Wp = 16Мкр/πD3≈ 5Мкр/D3.

Тогда:

  • τmaxIV = 5×-4,5×103/0,093 = -30864197 Па ≈ -30,086 МПа;
  • τmaxIII = 5×-7,1×103/0,093 = -48696844 Па ≈ -48,700 МПа;
  • τmaxII = 5×-10,2×103/0,093 = -69958847 Па ≈ -69,959 МПа;
  • τmaxI = 5×-12,2×103/0,093 = -83676268 Па ≈ -83,676 МПа.

6. Наибольший относительный угол закручивания Θmax определим по формуле:

Θmax = МКРmax/G×Iр = -12,2×103/524880 = 0,0232 рад/м.

7. По результатам расчетов строим эпюры крутящих моментов Мкр, касательных напряжений τmax и углов закручивания φ (см. рис. 2).

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  • Общее устройство автомобиля
  • Автомобильный двигатель
  • Трансмиссия автомобиля
  • Рулевое управление
  • Тормозная система
  • Подвеска
  • Колеса
  • Кузов
  • Электрооборудование автомобиля
  • Основы теории автомобиля
  • Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Рассмотрим 2 самых популярных редуктора

Червячный редуктор: его плюсы и минусы

Лучше всего редукторы червячные покупать непосредственно у производителя таких видов продукции. Например, с помощью интернет. «Червяк» имеет целый ряд положительных свойств. Особенно ценятся среди потребителя его бесшумная работа, плавный в ходу и за большие передаточные числа. В сравнении с другими он имеет меньший размер и более легкий весом. Но нужно учесть, что КПД «червяков» не слишком высоки, потому имеются ограничения по их мощности. Кроме этого, в работе частенько приходится пользоваться дополнительным охлаждением. Классификации червячного редуктора происходит по форме его зубов.

Цилиндрический редуктор: его плюсы и минусы

Конкуренцию «червякам» могут составлять цилиндрические редуктора. Они представляют собой механизмы, основанные на передачах вращений между валами, которые расположены в параллельной плоскости.

Такие механизмы часто встречаются в различных станках, с помощью которых происходят обработки стройматериала. К примеру, металлорежущее оборудование или в агрегат, обрабатывающий дерево. С такими редукторами идеально работают бетоносмесители.

Цилиндрические устройства имеют много положительных характеристик:

  • большие выносливости механизмов;
  • независимость от величин сил тока и напряжений в сетях;
  • высокие значения КПД, которые способствуют отсутствию перегревов деталей.

Одноступенчатые цилиндрические редукторы

Этот тип редуктора отличается от прочих положением валов в корпусе и числом ступеней. Одноступенчатые цилиндрические редукторы могут быть вертикальными и горизонтальными. Шестеренки этих устройств могут иметь косые и прямые, а также шевронные зубья. Корпуса производят из стали сварным способом или из чугуна путем литья. Монтаж валов зачастую производится в подшипники скольжения или качения. Первые зачастую устанавливаются в тяжелых редукторах.

Это интересно: Неисправности ДАД

Состав и возможности компоновки одноступенчатого редуктора ограничены. Главной чертой, которая отличает их друг от друга, является расположение валов и осей в пространстве. При этом передаточное число этих агрегатов колеблется в диапазоне от 1,6 до 6,3. Угол наклона передач, выполненных с использованием косозуба, находится в диапазоне от 8 до 200 градусов.

Максимальное передаточное число, которые способен обеспечить агрегат равно 12,5, но при этом редукторы с максимальным передаточным числом применяются редко. Зачастую используются те, которые имеют передаточное число, не превышающее цифру 6.

Какое расположение редуктора выбрать — вертикальным или горизонтальным? Все зависит от необходимости удобств общей компоновки этого передаточного устройства. В частности имеет значение, как расположен агрегат, который производит механическое движение, его рабочий вал и т.д.

Что собой представляет редуктор

При работе электродвигателя создается механическая энергия, которая должна быть передана на рабочий орган какой-либо машины. Именно для этой цели и используется редуктор. Еще один очень важный момент. При работе электродвигателя на 220в с редуктором получается так, что крутящий момент входного вала очень велик. После того как происходит преобразование энергии какого-либо типа в механическую и ее последующая передача к выходному валу, редуктор понижает количество оборотов, но поддерживает довольно высокий крутящий момент.

Применение этой особенности на практике хорошо можно проследить во время работы ручных машин. В таких видах устройств часто применяется планетарный, цепной или зубчатый вид передачи. Однако на сегодняшний день имеются агрегаты, в которых электродвигатель с редуктором настроены на выдачу не вращательного движения. Ярким примером второстепенного вида работы этого приспособления могут быть отбойные молотки (перфораторы).

Тип редуктора

На основе конструктивных особенностей различают: одноступенчатый и двухступенчатый червячный, горизонтально-цилиндрический, соосный цилиндрический и коническо-цилиндрический редуктор. В первых двух типах оба вала (входной и выходной) располагаются под углом 90° друг к другу (для моделей с двумя ступенями возможно и параллельное расположение), что позволяет монтировать их в любых пространственных положениях. Устройства на основе зубчатых колес в силу особенностей компоновки и принципов действия чаще всего устанавливаются горизонтально – следует учитывать это при их выборе. По сравнению с червячными приводами они обладают более высоким КПД (из-за меньших потерь мощности при зацеплении зубчатых колес) и выходным моментом (при равных габаритах и массе).

Схема редуктора, собранного из деталей списанной машины

Этот редуктор собран из деталей главного привода машины ГАЗ — 69. Конические шестерни вращаются от звездочки привода, который закреплен на хвостовике. Затем крутящийся момент перенаправляется на одну из двух ведомых шестерней, которые вращаются в подшипниках под номером 206 на шлицевом валу. В нужное время работает та шестерня, которая сцепляется с втулкой реверса на центральном шлице вала. Затем карданом движение передается дифференциалу или же ведущему колесу механического транспорта.

И заключающий важный момент для владельцев мотоблоков или минитракторов. При покупке механизма цена также играет важную роль, потому что на дешевые агрегаты в основном устанавливаются неразборные редукторы. Такие механизмы ненадежны для долгосрочной работы. Этот редуктор при надобности невозможно отремонтировать, разобрать или собрать, поменять детали. Его изготавливают из металла низкого качества, детали у него негельзированные.

На дорогие агрегаты устанавливаются редукторы, которые можно разобрать, а это позволяет производить техническое обслуживание редуктора и ремонт. Как и любой другой механический транспорт нуждается в постоянной перепроверки, ремонте, обновлении, так и редуктор необходимо постоянно просматривать и контролировать. Время от времени обязательно проводить диагностику механизма, для предотвращения поломок в дальнейшем.

При покупке выгоднее купить более дорогой редуктор, потому что он послужит вам дольше.

Виды мотор-редукторов

Сегодня разработано много вариантов мотор-редукторов, различающихся типом мотора, принципом построения механической части и общей геометрией. Фактически все допустимые конфигурации присутствуют в каталогах изготовителей.

По виду механического зацепления разделяют цилиндрические, конусообразные, червячные и планетарные модели. По обоюдному расположению входного и выходного валов рассматривают соосные, параллельные и угловые варианты. Исходя из передаваемых мощностей выделяют модули обыкновенного размера и мини мотор-редукторы. По типу присоединения к процессу, можно встретить варианты с одно- и двухсторонним валом, а еще с пустотелым выходным валом.

Цилиндрические мотор-редукторы

Агрегаты, применяющие традиционные цилиндрические редукторы приобрели огромное распространение, за счёт простоты, надежности и многофункциональности механической части устройства. Их применение возможно в большом спектре оборудования. В зависимости от всей конструкции, цилиндрические мотор-редукторы делаются с соосными или параллельными валами. Кол-во ступенек может изменяться от одной до 6-ти.

По методу расположения шестерен и общей компоновке выделяют вертикальные и горизонтальные модели. Данные устройства отличаются большим коэффициентом полезного действия, долговечностью и практически небольшой стоимостью. В отличии от многих иных вариантов, цилиндрические редукторы как правило не допускают произвольного расположения в пространстве, что существенно уменьшает их область использования.

Конусообразные мотор-редукторы

Устройства, собранные на основе конусообразных шестерен, дают возможность построить угловой конусообразный мотор-редуктор. Его основной особенностью будет перпендикулярное расположение входного и выходного валов. Это ориентирует их на применение в устройствах, требующих смены направления осей. Также конусообразные модели выгодно ставить в конструкциях, предъявляющих ограничение по одному из больших размеров устройства. Редукторы этого типа отличительны более большой ценой, в виду существенной трудности изготовления некоторых деталей. Передаточное отношение конусообразных моделей в большинстве случаев невелико. Для его увеличения, конусообразную и цилиндрическую передачи часто сочетают, результатом чего становится коническо-цилиндрический мотор-редуктор.

Червячные модели

Сегодня, большую популярность получили червячные одноступенчатые мотор-редукторы. В качестве механической передачи в них применяется червячная пара. Она обеспечивает высокое передаточное отношение при сравнительно малых габаритах. Из-за этого стоимость червячных моделей ниже заменителей с иной конструкцией. Среди остальных особенностей необходимо отметить перпендикулярное расположение валов и самостоятельное затормаживание механизма при отсутствии внешнего поступления энергии.

В отличии от цилиндрических и конусообразных моделей, приложение усилия к выходному валу не приводит к проворачиванию механизма. Из-за этого такие редукторы нередко применяют в ответственных решениях и подъемно-транспортных устройствах. Червячные редукторы как правило не требовательны к положению установки. Благодаря герметичному корпусу их можно располагать произвольным образом, благодаря чему данные модели широко используются для модернизации привода станков, промышленных линий и прочих механизмов. Из минусов червячных моделей в большинстве случаев выделяют маленькой КПД и очень высокое тепловыделение.

Планетарные и волновые мотор-редукторы

Благодаря компактности и высоким рабочим моментам, планетарные мотор-редукторы нашли большое применение в маленьких устройствах привода. Высокое передаточное отношение и способность работать с чрезмерными нагрузками, ориентирует их на применение одновременно с серводвигателями промышленных роботов и прочих автоматизированных устройств. Встречаются планетарные модели и общепромышленного использования. Благодаря конструкционным особенностям зубчатой передачи, эти модели мотор-редукторов делаются с соосными валами. Это дает возможность их применять для привода фактически любых механизмов.

Будущим развитием планетарных передач стали волновые редукторы. Они предоставляют большое передаточное отношение, мягкий ход и большую точность позиционирования выходного вала. Из-за этого подобные модели стали основой построения промышленных роботов. Вместе с высокими свойствами, такие типы передач отличительны большими требованиями к изготовлению, а, поэтому, и большой ценой, что значительно сдерживает распространение таких моделей.

Классификация оборудования

Мотор-редукторы классифицируются по нескольким критериям. В первую очередь это тип передачи. По данному критерию преобразователи делятся на такие группы:

  • цилиндрические – надежные и мощные механизмы, отличающиеся высоким КПД. По типу зубчатых колес делятся на косозубые, прямозубые, шевронные. Самые известные представители этой группы – мотор-редукторы МЦ2С;
  • червячные – характеризуются высоким передаточным соотношением, но сильно нагреваются во время работы. Отличаются плавным разгоном и торможением. Благодаря простоте конструкции имеют доступную цену. Представители – мотор-редукторы МЧ;
  • планетарные – отличаются компактными габаритами и небольшим весом, а также способностью выдерживать высокие нагрузки. Характеризуются самым высоким показателем КПД. К этой категории относятся мотор-редукторы 3МП, 4МП, МПО, МР;
  • конические – их отличительной особенностью являются пересекающиеся оси, позволяющие изменять направление кинетических передач;
  • смешанного типа – объединяют в себе передачи различных видов. Самые популярные варианты – коническо-цилиндрические и червячно-цилиндрические мотор-редукторы.

Кроме того, преобразователи классифицируются по количеству ступеней передачи (одно-, двух- и трехступенчатые), расположению осей (параллельные, пересекающиеся, соосные). Для большинства механизмов предусмотрено два варианта монтажа – на лапы или фланцевое соединение.

Рекомендуем: Как выбрать водосчётчик: обзор

Устройство и рабочий принцип

Конструкция мотор-редуктора собой представляет соединенные в единый блок механический редуктор и электро двигатель. Из-за этого, в технологичной установке потребуется залаживать одно установочное место, взамен 2-ух. Также не придется гарантировать сносность валов мотора и редуктора, выбирать и устанавливать муфту, передающую вращение. Единая конструкция мотор-редуктора имеет определенные отличия от разных вариантов. Корпус передачи делается с нужным прочностным запасом, обеспечивающим надежное функционирование устройства с закрепленным тяжёлым мотором. Для монтажа мотора на корпусе делаются специализированные места для посадки. В конструкции ведущей шестерни редуктора предусматриваются цилиндрические отверстия, которые применяются для установки вала приводного мотора. На корпусе дополнительно предполагают крепежные элементы для монтажа мотор-редуктора в технологическую установку. В качестве электрического привода мотор-редуктора разрешается использовать любые типы электрических двигателей. Очень часто можно встретить модели, применяющие обычные асинхронные электрические двигатели. Для реализации моноблочного выполнения подбирают модели фланцевого типа.

Рабочий принцип мотор редуктора не выделяется от работы традиционного редукторного электрического привода. Момент вращения мотора подается на ведущую шестерню, практически установленную на валу мотора. Благодаря зубчатому зацеплению, вращающий момент превращается одним или несколькими ведомыми элементами, которые со своей стороны оказывают влияние на вал технологического механизма.

Выходная частота вращения зависит от показателей мотора и передаточного отношения редуктора. Для получения очень высокого коэффициента изменения применяются многоступенчатые модели. Если понадобится корректировки скорости, мотор-редукторы легко интегрируются в системы с регулировкой оборотов при помощи управляемых преобразователей.

Как подобрать мотор редуктор?

В процессе проектирования нового оборудования или при модернизации старого перед конструктором неизбежно станет вопрос выбора мотор редуктора, на который влияют нижеприведенные факторы:

  • Момент нагрузки на выходном валу Тс,
  • Частота вращения вала, n2, [об/мин]
  • Условия использования оборудования
  • Мощность электродвигателя, P2, кВт
  • Конструктивный вариант исполнения
  • Режим работы Частота вращения выходного вала определяется величиной его передаточного числа: где n1 – это частота вращения входного вала редуктора (вала электрического двигателя)
  • Момент нагрузки или сопротивления Тс на выходном валу определяется конкретным механизмом, технологическим процессом и вычисляется по общепринятым методикам.
  • Требуемая мощность приводного электродвигателя с учётом коэффициента полезного действия редуктора, может быть определена по следующей зависимости: , где P1 — мощность электродвигателя; – момент на валу редуктора; – частота вращения вала; — показатель КПД редуктора.

Выбор мотор редуктора по моменту (Tред. ном.) предполагаем необходимость учитывать ~20%-е снижение момента по причине возможного 10%-го падения напряжения сети питания:

Режим эксплуатации раньше определялся и задавался нормами ГОСГОРТЕХНАДЗОРА:

  • Л – лёгкий, ПВ% до 16;
  • С – средний, ПВ% до 25;
  • Т – тяжёлый, ПВ% до 40;
  • ВТ – весьма тяжёлый, ПВ% до 63.

(ПВ% – продолжительность включения двигателя за 10 мин. работы или отношение времени работы электрического двигателя к суммарному времени цикла с учётом пауз, при которых двигатель остывает.)

Сегодня же для оценки степени нагрузки редуктора используют статистические типовые режимы «0–V» согласно положениям ГОСТ 21354; для двигателей – режимы «S1–S10» согласно нормам IEC 34-1. Но выбрать мотор редуктор стало гораздо проще по причине наличия компромиссного решения, учитывающего оба вышеприведенных фактора. Речь идет о коэффициенте условий эксплуатации – FS, при котором достаточно знать и учитывать нижеприведенные факторы:

  • Тип нагрузки: «А» – спокойная безударная;
  • «В» – нагрузка с умеренными ударами;
  • «С» – нагрузка с сильными ударами.

Продолжительность работы привода в расчете на сутки;
Число включений в час.

Вся эта информация поможет ответить на вопрос как подобрать мотор редуктор. Кроме того, специалисты нашей компании всегда рады оказать покупателям и заказчикам активную помощь и ответить на все интересующие вопросы.

Применение мотор-редуктора

Область применения мотор-редукторов практически полностью перекрывает варианты, использующие связку отдельных электродвигателя с редуктором. В большинстве случаев применение моноблочных моделей дает дополнительную выгоду по массе, габаритам и стоимости. Преимущества раздельного исполнения ограничены случаем использования демпфирующих муфт. Такие муфты способны расцеплять вал двигателя от вала редуктора при значительных динамических нагрузках. В мотор-редукторах скачки нагрузок с большой долей вероятности приведут к разрушению конструктивных элементов. Поэтому при выборе конкретных моделей следует учитывать запас по динамической прочности. Среди недостатков следует учитывать и меньшую ремонтопригодность. При выходе из строя механической части потребуется заменить весь агрегат, а не отдельную часть. Выход из строя электродвигателя менее критичен, так как его замена допускается большинством конструкций редукторов.

В некоторых случаях единая конструкция становится незаменимой. В миниатюрных устройствах автоматики и роботах, использование отдельных привода и механической передачи способно значительно усложнить и укрупнить конструкцию, понизить ее надежность. Конечной целью таких устройств является не поддержание требуемой скорости, а точное позиционирование отдельных элементов. В таких системах большое распространение нашли малогабаритные мотор-редукторы. В качестве привода в них используются шаговые, либо бесколлекторные двигатели, обеспечивающие высокую точность работы.

Конструктивные особенности взрывозащищённых мотор-редукторов

Отдельный класс мотор-редукторов.

Они состоят из редуктора, взрывозащищённого электродвигателя или из редуктора, взрывозащищённого электродвигателя и взрывозащищённого тормоза, а также, могут изготовлены быть под частотное регулирование.

Мотор-редукторы данного вида подбираются по климатическому исполнению, классу взрывоопасной зоны, классу взрывоопасной смеси. 

Характеристики мотор-редуктора по умолчанию

  • на 380 Вольт,
  • климатическое исполнение У3 (электродвигатель У2),
  • степень защиты 1ЕхdIIBT4(класс взрывоопасной зоны 2).

Всё отличное от этого оговаривается при заказе.

Отличия от общепромышленного мотор-редуктора

  1. Главным отличием от общепромышленного мотор-редуктора является факт нормирование температуры нагрева корпуса, как электродвигателя, так и редуктора. Для температурного класса Т4 это 135 градусов, для температурного класса Т5 — 100 градусов, для температурного класса Т6 — 85 градусов. При этом указанные температуры должны быть при верхнем значении рабочей температуры окружающей среды. По этой причине червячные мотор-редукторы и фрикционные мотор-вариаторы в оборудовании с классом T6 не применяются, так как они могут нагреваться до 90-95 градусов. Температурный класс определяется как температура вспышки взрывоопасной смеси  минус 50 . В большинстве случаев хватает температурного класса Т4.
  2. Если общепромышленный электродвигатель комплектуется только одним типом кабельного ввода, то взрывозащищённый комплектуется несколькими типами в зависимости от типа кабеля и наличия металлорукава:
      • для обычного кабеля,
      • для бронированного кабеля,
      • для трубной прокладки,
      • для металлорукава.

    По умолчанию электродвигатель поставляется с кабельным вводом для обычного кабеля. Для зарубежных электродвигателей необходимо указывать тип кабеля, так как они комплектуются кабельным вводом сборщиком мотор-редуктора.

  3. Ещё одно отличие при заказе мотор-редуктора с тормозом. Тормоз может быть как в электродвигателе, так и отдельной единицей. Если тормоз является отдельной единицей, то он может крепиться между электродвигателем и редуктором, или на второй  входной конец вала редуктора (если это позволяет редуктор). Когда тормоз является отдельной единицей —  электродвигатель может быть российского производства. Когда тормоз отдельная единица, то температура эксплуатации мотор-редуктора может быть минус 50 градусов (без подогрева).
  4. Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIICT4, может применяться и там, где требуется взрывозащита 1ExdIIBT4 (но, не наоборот). Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIIBT4, может применяться там, где требуется взрывозащита  1ExdIIAT3 (но, не наоборот).

Работа от преобразователя частоты

Все мотор-редукторы с взрывозащищёнными электродвигателями могут работать от преобразователя частоты с диапазоном регулирования от 35 до 50 Гц без дополнительных опций. Работа в диапазоне регулирования от 5 до 50 Гц приводит к снижению мощности электродвигателя (или увеличению размеров электродвигателя при той же  мощности), или его оснащению дополнительными опциями, например, вентилятором.

Так, 3 кВт электродвигатель превращается в 1,9 кВт. Дополнительные опции в электродвигателях российского производства появляются в электродвигателях 132 габарита и выше. Электродвигатель с дополнительными опциями (вентилятор принудительного охлаждения) может работать и на частотах от 1 Гц. Если у вас диапазон регулирования 5-50 Гц, то момент редукторной части рассчитывается по мощности сетевого питания,то есть, по большей мощности с коррекцией (уменьшением) на 0,05 коэффициентов. В любом случае, момент на редукторе не должен быть выше 1,6 табличного во всех режимах работы мотор-редуктора. В противном случае, мотор-редуктор очень быстро выйдет из строя.

Следует отметить, что обдув редукторной части в мотор-редукторах имеющих крыльчатку на втором конце вала быстроходной ступени, с уменьшением частоты вращения электродвигателя также падает, что может привести к перегреву редуктора. Решением может быть только установка электровентилятора (взрывозащищённого) со стороны редукторной части.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий