Константан — термостабильный сплав

Прайс-лист с актуальными ценами на лето 2021г.

Вольфрамовая проволока ВА 0,08 – 0.8 мм 6580
Проволока хромель НХ9,5 диаметры 0,2 – 3,2 ммПроволока термопарная для изготовления термопар и компенационных проводов. Класс точности А1 и А24200
Молибденовая проволока 0,4мм – 3,17 ммМолибденовая проволока МЧ 2,0мм, ГОСТ 27266-87, Проволока из марки молибдена МЧ 5760
Молибденовый прутокПрутки молибденовые, молибденовый пруток МЧ и МЧВП (ТУ 48-19-247-93)5160
Проволока никелевая НП2 0,1 – 3,0 ммНикелевая проволока ДКРНМ 0,6 КТ НП2, НП1 ДКРНТ 0,1мм4200
Плита монель 400Плита монель 400, Лист монель, MONEL400, 401, 404, R-405, K-500, Монель НМЖМц 28-2,5-1,5, НМЖМц 28-2,5-1,54200
Никелевый пруток НП2 ф 7-20 ммПруток ДКРНТ 8,0-20 НП2, Пруток ДКРНТ 8,0-20 НП2, ГОСТ 13083-773600
Лента константан МНМц40-1,5Лента константан МНМц40-1,5 0,2х250мм. ГОСТ 5189-753960
Никелевый прокатПроволока никелевая НП2, Пруток (круг) никелевый 10мм, Лист Лента никелевая4200
Проволока нихром Х20Н80Нихромовая проволока Х20Н80, ГОСТ 8803-892360
Проволока алюмель НМЦАк 2-2-1 Ф 0,2 – 3,2 ммПроволока термопарная алюмель НМЦАК 2-2-14200
Пруток монель НМЖМЦ 28-25-1,5Монелевый пруток (круг) НМЖМц 28-2,5-1,5 диаметр от 14 до 100мм3600
Проволока константан МНМЦ40-1,5 ф 0,05-3,0 ммКонстантановая проволока 0,1мм – 3,0мм3240
Лист монель 400 2х600х1500 ммМонелевый лист, лист монель 400 2х600х1500мм3960
Лента нихром Х20Н802400
Проволока нихром Х15Н601920
Вольфрамовые прутки (электроды) ВЛ, СВИ, ВАПрутки ВЛ, СВИ (электроды) диаметр 1,0 – 8,0мм7200
Лист монель 400 4х1200х1500 мм4800
Плита монель 400 20х600х1500 мм3960
Плита монель 400 16х600х1500 мм3960
Проволока монель НМЖМц 28-2,5-1,5 0,3 мм 0,5 мм2880
Круг мельхиор МНЖМц30-1-1 200 мм1620
Труба монель 400 16х2х2000 мм5580
Труба мельхиор МНЖМц 30-1-1 16х2х2000 мм2600
Пруток мельхиор МН19ВИ 14 мм4200
Проволока термопарная копель МНМц 43-0,53600

Главная » Продукция » Константан

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.

Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.

Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).

Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град).Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

  1. Михеев М.А., Михеева И.М. Основы теплопередачи.
  2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  3. Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  4. Шелудяк Ю.Е., Кашпоров Л.Я. и др. Теплофизические свойства компонентов горючих систем. М. 1992. — 184 с.
  5. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М.: «Металлургия», 1975.- 368 с.

Олово

Sn — Олово. Основной компонент мягких припоев. Олово — относительно легкоплавкий металл, что позволяет использовать его для соединения проводников. В чистом виде не используется (см. факты). Из-за дороговизны олова (а также других причин, см. ниже), его в припоях разбавляют свинцом. Припой из 61% олова и 39% свинца образует эвтектику,
такой смесью, ПОС-61 (Припой Оловянно-Свинцовый — 61% олова) паяют радиодетали на платах, провода. В менее ответственных узлах (шасси, теплоотводы, экраны и т.п.) олово в припоях разбавляют сильнее, до 30% олова, 70% свинца.

Электронные устройства долгое время паяли оловянно-свинцовыми припоями. Затем набежали экологи и заявили, что свинец — металл тяжелый, токсичный, и проблемы бы не было, если бы все эти ваши айфоны, компьютеры и прочие гаджеты не оказывались на свалке, откуда свинец попадает в окружающую среду. Поэтому придумали серию бессвинцовых припоев, когда олово разбавлено висмутом, или вовсе используется в чистом виде, стабилизированное добавками, например, серебра. Но эти припои дороже, хуже по характеристикам, более тугоплавкие. Поэтому оловянно-свинцовые припои надолго останутся в ответственных изделиях военного, космического, медицинского применения.

Кроме того, бессвинцовые припои склонны к образованию “усов”. (Помимо олова, склонны создавать “усы” также покрытия из кадмия и цинка.) Оловянные усы — длинные тонкие кристаллы, вырастающие из оловянного припоя — причина отказов и сбоев аппаратуры. К сожалению, присадки в припои не позволяют на 100% прекратить рост “усов”, поэтому оловянно-свинцовые припои, как проверенные временем, используются в критичных системах — космос, медицина, военка, атомные применения.

Подробнее про усы.

Катушки и прутки оловянно-свинцовых припоев. Проволока из припоя содержитцентральный канал с флюсом, облегчающим процесс пайки.

Сфера применения

В зависимости от применения мировой рынок сплавов нихрома можно разделить на архитектурные, автомобильные, электронные, аэрокосмические и другие. Нихромовые сплавы используются для изготовления монеля из железа и стали, для производства нержавеющей стали. Сплавы нихрома используются в архитектурных целях, таких как свинец для водопроводных труб, кровли и окон.

Нихром используется в передачах, карданных валах, специальных транспортных средствах для работы в зоне с низкими температурами или интенсивного износа. Он также используется в специальных инженерных целях. Сплавы нихкрома в основном используются для нагрева электрическим сопротивлением. Они обладают высокой электрической стойкостью, хорошей прочностью и пластичностью при рабочих температурах.

Нихром широко используется в индустрии фейерверков и взрывчатых веществ и для подготовки проводов для систем электрического зажигания, таких как зажигалки, электрические спички и электронные сигареты.

Это вещество используется в керамических работах. Он служит для обеспечения внутренней структуры поддержки и помогает удерживать формы глиняных скульптур мягкими. Из-за его устойчивости к высоким температурам он используется, когда куски глины обжигают в печах. Нихромные проволоки используются для проверки цвета пламени в неосвещенных частях катионного огня от катионов натрия, меди, калия и кальция.

Нихром также используется в микробиологических лабораториях и для создания термопар.

Применение

Сфера применения рассматриваемого материала определяется его параметрами. Так, большая термоэлектродвижущая сила обуславливает возможность использования константана в качестве исходного материала для, термопар. Значительное электрическое сопротивление позволяет создавать из него элементы сопротивления, представленные реостатами, и нагревательные элементы. Так как электрическое сопротивление константана слабо связано с температурой, он подходит для тех случаев, когда необходима стабильность электрического сопротивления. Помимо этого, рассматриваемый сплав применяется в измерительном оборудовании низкого класса точности и в качестве материала удлиняющих проводов.

Изделия из константана представлены проволокой диаметром 0,2-2,5 мм и лентами толщиной 0,1-2 мм и шириной 10-300 мм. Причем проволока представлена в двух вариантах: мягкой (отожженной) и твердой. Их свойства отличаются. Так, для мягкого варианта удельное сопротивление составляет 0,46-0,48 ом×мм2/м, прочность на разрыв – 45-65 кг/мм2, в то время как для твердой проволоки удельное сопротивление равно 0,48-0,52 ом×мм2/м, прочность на разрыв -65-70 кг/мм2. Кроме того, выпускают продукцию как без изоляции, так и с различными ее вариантами: высокопрочной эмалевой, двухполосной шелковой, двухслойной комбинированной эмаль-шелковой и эмаль-лавсановой.

Константановая проволока служит для изготовления проводников между приемником и контактором высокоточных температурных измерителей. Также из нее делают компенсационные провода термопар. Из проволоки и лент создают резистивные, ленточные и проволочные нагревательные элементы промышленных печей по выплавке металлов с небольшой температурой плавления. Наконец, из константана производят реостаты, резисторы, тензометрические датчики.

Во-первых, высокое электрическое сопротивление, способствует быстрому и сильному нагреву. Во-вторых, малый температурный коэффициент сопротивления позволяет значительно упростить конструкцию нагревателя. Так, он избавляет от необходимости понижения напряжения при запуске, следовательно, не требуется трансформатор. В-третьих, хорошие технологические особенности позволяют создавать детали сложной конфигурации.

Таким образом, благодаря названным свойствам константана в совокупности возможно изготовление из него коротких нагревательных элементов большой площади поперечного сечения. Это считают существенным преимуществом по следующим причинам. Во-первых, печи многих типов, например, лабораторные, рассчитаны на короткие нагревательные элементы. Во-вторых, детали большого диаметра характеризуются большим сроком службы.

Константан применяют как для открытых, так и для закрытых нагревателей. В первом случае его используют в виде ленты и толстой проволоки. Это объясняется сгоранием тонкой проволоки на открытом воздухе при высоких температурах (более 400-450 °C). Однако материал в такой форме актуален для печей с инертным газом, вакуумных печей, закрытых нагревателей. В последнем случае в устройствах типа ТЭН, ориентированных на нагрев жидкости, воздуха, полов и т. д., константан не контактирует с окружающей средой. В большинстве таких нагревателей он в виде спирали из нити помещен в герметичную трубку. Для высокомощных моделей применяют толстую проволоку и ленту.

Также относительно формы константана следует отметить, что проволоку считают более предпочтительной по техническим и экономическим особенностям для нагревательного оборудования в сравнении с лентой. Так, для крупных промышленных печей применяют материал диаметром 3-7 мм, для меньших аналогов – 0,03-2,5 мм проволоку. К преимуществам проволоки перед лентой относят меньшую стоимость и простоту изготовления нагревательных элементов. Так, спиральные детали создают путем станковой навивки. К тому же проволочную спираль, благодаря компактности и высокой пластичности, можно разместить в оборудовании различными способами: на сводах и стенках зигзагами и лабиринтом, подвесить на керамических изоляторах, навить на трубчатое основание. Второй способ применяют на низкотемпературных печах, а третий считают наиболее эффективным. Вследствие больших трудоемкости и затратности создания нагревательных элементов из ленты обычно ее применяют в основном в специфических случаях. В любом случае константановые нагревательные элементы близки по параметрам эффективности, независимо от формы.

Пайка нихрома

Пайка нихрома с нихромом, нихрома с медью и ее сплавами, нихрома со сталью может быть осуществлена припоем ПОС-61, ПОС-50, хуже ПОС-40, с применением флюса следующего состава (граммы): вазелин — 100, хлористый цинк в порошке — 7, глицерин — 5. Флюс приготовляют в фарфоровой ступке, в которую кладут вазелин, а затем добавляют, хорошо перемешивая до получения однородной массы, последовательно хлористый цинк и глицерин. Соединяемые поверхности тщательно зачищают шлифовальной шкуркой и протирают ватой, смоченной в 10%-ном спиртовом растворе хлористой меди, флюсуют, лудят и только после этого паяют. Значительно лучшие результаты, чем пайка, дает сварка, в особенности, если приходится соединять между собой концы тонкой проволоки. Преимущество сварки состоит в том, что для ее выполнения никаких припоев не требуется. Контакт при этом получается очень надежный, так как температура нагрева свариваемых металлов значительно выше, чем, например, у оловянно-свинцо-вьгх припоев. Поэтому при эксплуатации даже от сильного нагрева сваренного контакта соединение проводов не нарушается. Для соединения проводов из нихрома, константана, манганина и т. п. их следует зачистить, скрутить и пропустить через них ток такой силы, чтобы место сварки накалилось докрасна. На это место пинцетом кладется кусочек ляписа (азотнокислого серебра), который при нагревании расплавляется, в результате чего в месте соединения возникает прочный контакт.

Если диаметр свариваемой проволоки не превышает 0,15…0,2 мм, то ее концы накладывают друг на друга (расстояние 15…20 мм) и на них наматывают тонкую медную проволоку диаметром 0,1…0,15 мм. Затем соединенные таким образом проволочки вносят в пламя горелки. Медь при этом начинает плавиться и прочно соединяет оба высокоомных провода. Оставшиеся концы медной проволоки обрезают, а место сварки изолируют, если нужно. Этот способ применим для соединения медных проводов с проводами из сплавов высокого сопротивления. Перегоревший провод электронагревательного прибора (нихром, никелин, константан) можно соединить следующим способом: концы провода в месте обрыва вытянуть на длину 15…20 мм и зачистить до блеска шкуркой. Затем из листовой стали или алюминия вырезать небольшую пластинку и из нее сделать муфту, надеваемую на провода в месте их соединения. Провода должны быть предварительно скреплены обычной скруткой. В заключение муфту плотно сжимают плоскогубцами.

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением

и обозначается греческой буквойρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r

– сопротивление проводника в омах;ρ – удельное сопротивление проводника;l – длина проводника в м;S – сечение проводника в мм².

Пример 1.

Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2.

Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3.

Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4.

Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5.

Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления

и обозначается буквой α.

Если при температуре t

0 сопротивление проводника равноr 0 , а при температуреt равноr t , то температурный коэффициент сопротивления

Примечание.

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t

r t

=r 0 .

Пример 6.

Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t

=r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7.

Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Видео по теме

О температурной зависимости сопротивления металлов в видео:

Среди металлов медь занимает второе место по электропроводимости, уступая только гораздо более дорогому серебру. Потому в электротехнике ее применяют очень широко, в частности, при устройстве домашней электропроводки.

Но в прежние времена проводку изготавливали из более дешевого алюминия и в старых домах такой кабель еще часто встречается.

Владельцу важно знать, что непосредственный контакт алюминиевого и медного проводников недопустим: металлы разрушаются из-за электрохимической реакции. Соединение осуществляют посредством специальных переходников

Оксид Индия-Олова

Оксид Индия – Олова (Indium tin oxide или сокращённо ITO) — полупроводник, но обладает невысоким сопротивлением, а самое главное, пленка из оксида индия-олова прозрачна. Это свойство используется при производстве ЖК дисплеев, сетка электродов на поверхности стекла нанесена именно из оксида индия-олова. Также резистивные touch панели имеют прозрачное проводящее покрытие.

Пленка ITO едва видна в отражении, чтобы хоть как то она была заметна пришлось разобрать ЖК дисплей:

Стекла от ЖК индикатора электронных часов. Индикатор подключался к электронной схеме через токопроводящую резинку, гребенка контактов видна в нижней части стекла.

На просвет проводящая пленка не видна

На удивление, сопротивление пленки довольно низкое.

Железо как проводник в электротехнике

Железо — самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

Где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

Будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .

Как видим, сопротивление железа достаточно большое, проволока получается толстая.

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии. С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества. Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий