Хромель и его физические свойства, состав и характеристики

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Проволока Нх 9,5 (Хромель)

Плотность сплава (хромели) составляет 8710 кг/м³, температура плавления 1400 – 1500 °C, температурный коэффициент  линейного расширения – 12,8·10−6 °C−1, удельное электрическое сопротивление – 0.66 мкОм*м. Проволока из хромели обладает большой термоэлектродвижущей силой (вырабатывает электрический ток,  в контактируемом с другим металлом месте).
К недостаткам хромели относится снижение термоЭДС при быстром охлаждении после отжига  в температурном интервале до 600°C. Если использовать проволоку в  измерительных приборах с источником тепла выше 600°C – погрешность замера будет достаточно высокой до 10°C.
Хромель проволока наиболее широко распространена по сравнению с лентой или кругом. Ее применяют при выпуске компенсационных проводов, реостатов, нагревательных приборов и термопар.
Хромель Т (НХ9,5) и К (НХ9)
Хромели НХ9,5 и НХ9 отличаются высокими механическими свойствами и жаростойкостью. Хромель НХ9,5 применяется в термопарах (положительный электрод), а хромель НХ9 – в качестве компенсационных проводов. При высоких температурах хромель по жаростойкости уступает нихрому.

Химический состав хромелей Т и К

Марка сплава Основные компоненты, % Примеси, %, не более
Cr Co Ni Al Fe Si Mg Mn
Хромель Т (НХ9,5) 9,00-10,00 0,60-1,20 Ост 0,15        0,30       0,40      0,05      0,30
Хромель К (НХ9) 8,50-10,00 0,40-1,20

Продолжение

Марка сплава Примеси, %, не более Применение
Cu Pb S C P Bi As Sb всего
Хромель Т (НХ9,5) 0,25  0,002   0,01   0,20   0,003 0,002 0,002  0,002    1,40 Проволока для термоэлектродов термопар
Хромель К (НХ9) Проволока для компенсационных проводов

Физические и механические свойства хромелей Т (НХ9,5) и К (НХ9)
Температура плавления, ˚С …………………………………………………..1435
Плотность, г/см3 ………………………………………………………………..8,7
Коэффициент линейного расширения при 0-1000˚С  α×106……………..12,8
Тепловое расширение на 1м(мм) при температуре, ˚С:
200 …………………………………………………………………………………3
700 …………………………………………………………………………………12
Удельное электросопротивление, Ом·мм2/м……………………………….0,6-0,7
Температурный коэффициент электросопротивления при
0-100˚С…………………………..………………………………………………..0,00048
Магнитные свойства ……………………………………………………………не магнитен
Предел прочности при растяжении δв кгс/мм2:
мягкий………………….………………………………………………………….60-70
твердый (наклеп 80%)………………………………………………………….110
Относительное удлинение δ, %:
мягкий…………………………….……………………………………………….34-45
твердый ……………..……………………..……………………………………3
Твердость НВ, кгс/мм2:
мягкий………………………….…………………………………………………150-200
твердый…………………………………….…………………………………….300
Технологические свойства и режимы обработки хромелей Т (НХ9,5) и К (НХ9)
Температура, ˚С:
литья………………………………..……………………………………………1550
ковки и прокатки………………………………….…………………………….1180-1220
отжига…………………………………………………………………………….800-850
Максимальная рабочая температура, ˚С………………………….………1000
Травитель Н2SO4 : HNO3 ……………………………………………….……1:1
Температура изложницы, ˚С……………………………………….………….до 100
Покровный флюс ……………………………………………………………….стекло
Раскислитель ……………………………………………………………………магний

Заказать товар

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Документы

ГОСТ 1790-77
Размер:
242.3 Кб

Компания «Урал-ЕК» работает не только по всей России, но и по странам СНГ, и предлагает широкий спектр проводов для подключения термопар. Вашему вниманию представлены провода самых разных марок: ПТВ, ПТВВ, ПТВЭВ, ПТН, ПТП и многие другие. Вы можете выбрать необходимые вам провода в нашем каталоге.

Как оформить заказ

Чтобы оформить заказ на необходимую вам кабельную продукцию, воспользуйтесь специальной формой или позвоните по телефону:

Применение

Все вышеперечисленные характеристики позволили найти хромелю широкое распространение в электротехнике. А именно:

  • Хромель служит материалом для изготовления разного рода термопар — устройств для измерения температур. Диапазон измерения таких приборов исчисляется 800-1000 ºC. Работать они способны во всех средах за исключением сернистой. Причина этого была показана выше. Также среди преимуществ выделяют точность передаваемых ими измерений. В обычных условиях она равняется не более сотых долей процента.
  • Хромелевая проволока используется при производстве разного рода компенсационных проводов и реостатов. Главное их назначение — это регуляция температуры и бесперебойность работы электроустройств.
  • Хромель применяется в качестве нагревательного элемента по причине своей повышенной жаростойкости. Это происходит в редких случаях, т.к. входящий в его состав никель обладает высокой ценой, что является невыгодным с точки зрения рентабельности.

Несмотря на свою 60-ю летнюю историю, хромель до сих пор остается востребованным материалом. Около 70% всех выпускаемых термопар содержат хромелевую проволоку в своем составе. Но растущие цены на никель пошатнули безоговорочное лидерство хромеля. Сейчас более дешевый константан все больше завоевывает популярность и еще не известно кто окажется впереди через несколько лет.

Рейтинг: 0/5 — 0 голосов

Особенности металла

Хром – металл 4 периода 6 группы побочной подгруппы. Атомный номер 24, атомная масса – 51, 996. Это твердый металл серебристо-голубоватого цвета. В чистом виде отличается ковкостью и вязкостью, но малейшие примеси азота или углерода придают ему хрупкость и твердость.

Хром часто относят к черным металлам за счет цвета его основного минерала – хромистого железняка. А вот свое название – от греческого «цвет», «краска», он получил благодаря своим соединениям: соли и оксиды металла с разной степенью окисления окрашены во все цвета радуги.

  • В нормальных условиях хром инертен и не взаимодействует с кислородом, азотом или водой.
  • На воздухе он сразу же пассивируется – покрывается тонкой оксидной пленкой, которая полностью перекрывает кислороду доступ к металлу. По той же причине вещество не взаимодействует с серной и азотной кислотой.
  • При нагревании металл становится активным и вступает в реакции с водой, кислородом, кислотами и щелочами.

Для него характерна объемно-центрированная кубическая решетка. Фазовые переходы отсутствуют. При температуре в 1830 С возможен переход к гранецентрированной решетке.

Однако у хрома есть одна интересная аномалия. При температуре в 37 С некоторые физические свойства металла резко меняются: изменяется электросопротивление, коэффициент линейного расширения, падает до минимума модуль упругости и повышается внутреннее трение. Связано это с прохождением точки Нееля: при этой температуре вещество меняет свои антиферромагнитные свойства на парамагнитные, что представляет собой переход первого уровня и означает резкое увеличение объема.

Химические свойства хрома и его соединений описаны в этом видео:

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Марки термопарных проводов

Все термопарные нагревостойкие провода в изоляционной оболочке производятся и маркируются в соответствии с национальными стандартами, определяющими температуру эксплуатации и конструкцию провода (число и диаметр жил), общий диаметр провода в оболочке, массу на 1 км провода и т.п.

К примеру, провода марок СФКЭ, КТМСФЭ и КТСФЭ изготавливаются по ТУ 16-505.944-76 в комбинированной оболочке из стеклонити и фторопласта, а их максимальная рабочая температура составляет +250 градусов. Марки проводов ПТВ, ПТГВ, ПТВВ, ПТВВт выпускаются в соответствии с ТУ 16.К19-04-91 в ПВХ-оболочке и имеют теплостойкость менее +105 градусов. Жёсткие термопарные провода марки КТМС по ТУ 16-505.757-75 защищает оболочка (трубка) из нержавеющей стали с минеральным наполнителем.

Популярные в прошлом провода ПТН, ПТНО и ПТНО-9СЮ, выпускаемые по отечественному стандарту ТУ 16-505.663-74 широко применялись в промышленности и науке. Они представляют собой одножильные и двужильные провода в изоляции из стеклонити и кварцевой нити с повышенной нагревостойкостью. ПТН и ПТНО с температурой эксплуатации до 600 °С выпускаются и в настоящее время. С 2008 года провода ПТНО-900 сняты с производства, также прекращен выпуск кварцевой нити необходимой для производства данных проводов. В качестве замены ПТНО-900 разработан новый современный провод ПТН-1100 (ТУ 3567-022-66158671-2016). ПТН-1100 обладает улучшенной температурной стойкостью (эксплуатация возможна до 1100 °С даже при малом диаметре проволоки от 0,2 мм.) и лучшей прочностью изоляции на истирание, при таких же габаритных размерах и массе.

Хромель-Р

Костюм Джина Сернана для Gemini 9A, демонстрирующий защитный слой брюк

Chromel R имеет состав Cr 20%, Ni 80%.

Chromel-R также производился как ткань из хромелевой проволоки. Он был разработан Litton Industries для использования НАСА в Близнецы и Программы Аполлона.

В Скафандр Gemini G4C не использовал Chromel-R в стандартной комплектации. Тем не менее миссия заключалась в том, чтобы проверить использование Отряд маневрирования космонавта, свободно летающий «ракетный ранец». Для защиты от горячего выхлопа его пероксид водорода двигатель, Джин Сернан Костюм получил дополнительную защиту с помощью подкладки из Chromel-R. Выход в открытый космос во время этого полета вызвал ряд проблем: Сернан перегрелся и скафандр с трудом передвигался в нем, «со всей гибкостью ржавого доспеха». Слой Chromel-R был неотъемлемой частью скафандра, хотя ограниченная капсула Близнецов не требовала большого движения до выхода в открытый космос. После того, как скафандр оказался под давлением, его стало трудно переместить.

Лунная перчатка из EVA Apollo 11. Серые области – Chromel-R

Небольшие участки Chromel-R образовывали внешний слой скафандр аполлона там, где требовалась стойкость к истиранию. Эти пятна можно увидеть как серебристо-серые области на белом фоне. Бета ткань основного костюма. Использование заплаток, а не всей одежды, позволило избежать проблем с гибкостью с Gemini. Верхняя часть бахилы, перчатки и патчи под жизненная поддержка рюкзак был из Chromel-R. Позолоченная сетка Chromel-R с открытым переплетением также использовалась в качестве отражающей поверхности для компактно складывающейся параболической антенны на космических кораблях.

Химические и физические свойства хрома

Температура плавления и кипения

Физические характеристики металла зависят от примесей до такой степени, что сложным оказалось установить даже температуру плавления.

  • Согласно современным измерениям температура плавления считается величина в 1907 С. Металл относится к тугоплавким веществам.
  • Температура кипения равна 2671 С.

Ниже будет дана общая характеристика физических и магнитных свойств металла хром.

Общие свойства и характеристики хрома

Физические особенности

Хром относится к наиболее устойчивым из всех тугоплавких металлов.

  • Плотность в нормальных условиях составляет 7200 кг/куб. м, это меньше чем у железа.
  • Твердость по шкале Мооса составляет 5, по шкале Бринелля 7–9 Мн/м2. Хром является самым твердым металлом из известных, уступает только урану, иридию, вольфраму и бериллию.
  • Модуль упругости при 20 С составляет 294 ГПа. Это довольно умеренный показатель.

Благодаря строению – объемно-центрированная решетка, хром обладает такой характеристикой, как температура хрупко-вязкого периода. Вот только когда речь идет об этом металле, эта величина оказывается сильно зависящей от степени чистоты и колеблется от -50 до +350 С. На практике раскристаллизированный хром никакой пластичностью не обладает, но после мягкого отжига и формовки становится ковким.

Прочность металла также растет при холодной обработке. Легирующие добавки тоже заметно усиливают это качество.

Далее представлена краткая характеристика теплофизических свойств хрома.

Теплофизические характеристики

Как правило, тугоплавкие металлы имеют высокий уровень теплопроводности и, соответственно, низкий коэффициент теплового расширения. Однако хром заметно отличается по своим качествам.

В точке Нееля коэффициент теплового расширения совершает резкий скачок, а затем с увеличением температуры продолжает заметно расти. При 29 С (до скачка) величина коэффициента составляет 6.2 · 10-6 м/(м•K).

Теплопроводность подчиняется этой же закономерности: в точке Нееля она падает, хотя и не столь резко и уменьшается с возрастанием температуры.

  • В нормальных условиях теплопроводность вещества равна 93.7 Вт/(м•K).
  • Удельная теплоемкость в тех же условиях – 0.45 Дж/(г•K).

Электрические свойства

Несмотря на нетипичное «поведение» теплопроводности хром является одним из лучших проводников тока, уступая по этому параметру только серебру, меди и золоту.

  • При нормальной температуре электропроводность металла составит 7.9 · 106 1/(Ом•м).
  • Удельное электрическое сопротивление – 0.127 (Ом•мм2)/м.

До точки Нееля – 38 С, вещество является антиферромагнетиком, то есть, под действием магнитного поля и при его отсутствии никаких магнитных свойств не проявляется. Выше 38 С хром становится парамагнетиком: проявляет магнитные свойства под действием внешнего магнитного поля.

Токсичность

В природе хром встречается только в связанном виде, поэтому попадание чистого хрома в организм человека исключено. Однако известно, что металлическая пыль раздражает ткани легких, через кожу не усваивается. Сам металл не токсичен, но о его соединениях этого сказать нельзя.

  • Трехвалентный хром оказывается в окружающей среде при добыче хромовой руды и ее переработке. Однако в организм человека может попасть и в составе пищевой добавки – пиколината хрома, используемой в программах по уменьшению веса. Как микроэлемент трехвалентный металл участвует в синтезе глюкозы и необходим. Избыток его, судя по исследованиям, определенной опасности не представляет, поскольку не всасывается стенками кишечника. Однако в организме он может накапливаться.
  • Соединения шестивалентного хрома токсичны более чем в 100–1000 раз. Попасть в организм он может при производстве хроматов, при хромировании предметов, при некоторых сварочных работах. Соединения шестивалентного элемента являются сильными окислителями. Попадая в ЖКТ, они вызывают кровотечение желудка и кишечника, возможно с прободением кишечника. Через кожу вещества почти не всасываются, но оказывают сильное разъедающее действие – возможны ожоги, воспаления, появление язв.

Такое же действие соединение производит и на дыхательную систему, но учитывая большую чувствительность слизистой, здесь картина более разрушительна.

Хром – обязательный легирующий элемент при получении нержавеющих и жаропрочных сталей. Его способность противостоять коррозии и передавать это качество сплавам остается самым востребованным качеством металла.

Химические свойства соединений хрома и его окислительно-восстановительные свойства рассмотрены в этом видео:

Исторический экскурс

Возникновение нейзильбера связано с изобретенным в Китае мельхиором. В VIII в. до н. э. в Китае ощущалась острая нехватка золота и серебра, чтобы из них чеканить монеты. Тогда китайский правитель велел алхимикам изобрести материал, который по себестоимости был бы менее затратным. Так появился недорогой мельхиор. Он обладал прочностью и заменял монеты и ювелирные украшения. Китайские ученые долго держали в секрете состав и формулу мельхиора, потому что он очень походил на драгоценный металл и был намного дешевле.

С течением времени мельхиор стал известен в Европе. Обществу был интересен состав сплава. Долго пытались раскрыть эту загадку европейские ученые. Они открыли состав мельхиора (медь, никель и цинк), но количество каждого металла они не смогли раскрыть. Затем все опыты прекратили на 300 лет. Только в 19 веке в Германии смогли получить аналог мельхиора. Однако на самом деле полученный металл был другим. Он получился наиболее прочным и устойчивым, а разрушение его состава происходило лишь в кипящих серной и соляной кислотах. Таким образом, химики Германии изобрели новый сплав — нейзильбер. Его себестоимость намного ниже, чем у мельхиора и серебра.

В Германии в 1825 году был создана фабрика, которая в больших масштабах вела производство мельхиоровых ложек, вилок, тарелок. Также из него производились часы, бижутерия и т. д.

В XIX веке в Европе мельхиор имел широкое применение. В России он использовался только небогатым населением, а именовали его как польское серебро, германский состав, сильвероид. Однако к концу XX века наименование мельхиор вытеснило все другие наименования. Слово «нейзильбер» является техническим термином, который используется в металлургии.

Получение сплава

Производство хромеля ничем не отличается по сравнению с другими сплавами этой группы. Выплавляют при температуре 1400-1500 ºC, используя, всевозможные разновидности вакуумных и индукционных печей. В качестве исходного материала применяют шихту или брикеты чистых металлов: хрома и никеля.

После выплавки хромель поставляется на участок горячей обработки давлением. Там уже при температуре 1200-1300 ºC из него тянут проволоку диаметром от 0,1 до 5 мм. Это единственный вид металлопрофиля согласно ГОСТ 1790-2016, который изготавливается из хромеля.

Далее хромелевая проволока подвергается термической обработке: высокотемпературному отжигу при 700-800 ºC. Это необходимо для снятия внутренних напряжения, с одной стороны, а с другой для уменьшения вероятности образования ликвации – неоднородности сплава по химическому составу. Для улучшения внешнего вида проволоки, дополнительно проводят ее обработку серной кислотой.

Сфера применения

В зависимости от применения мировой рынок сплавов нихрома можно разделить на архитектурные, автомобильные, электронные, аэрокосмические и другие. Нихромовые сплавы используются для изготовления монеля из железа и стали, для производства нержавеющей стали. Сплавы нихрома используются в архитектурных целях, таких как свинец для водопроводных труб, кровли и окон.

Нихром используется в передачах, карданных валах, специальных транспортных средствах для работы в зоне с низкими температурами или интенсивного износа. Он также используется в специальных инженерных целях. Сплавы нихкрома в основном используются для нагрева электрическим сопротивлением. Они обладают высокой электрической стойкостью, хорошей прочностью и пластичностью при рабочих температурах.

Нихром широко используется в индустрии фейерверков и взрывчатых веществ и для подготовки проводов для систем электрического зажигания, таких как зажигалки, электрические спички и электронные сигареты.

Это вещество используется в керамических работах. Он служит для обеспечения внутренней структуры поддержки и помогает удерживать формы глиняных скульптур мягкими. Из-за его устойчивости к высоким температурам он используется, когда куски глины обжигают в печах. Нихромные проволоки используются для проверки цвета пламени в неосвещенных частях катионного огня от катионов натрия, меди, калия и кальция.

Нихром также используется в микробиологических лабораториях и для создания термопар.

Эксплуатационные свойства

Внешний вид мельхиора позволяет имитировать дорогостоящее серебро. При этом сплав отличается большой прочностью и весит гораздо меньше, чем благородный металл. Чтобы разобраться во всех нюансах использования такого материала, нужно первым делом изучить его характеристики. Если нужно написать развёрнутый доклад о мельхиоре по химии в 9 классе, то следует изучить основную информацию об этом сплаве, чтобы за проделанную работу получить высокую оценку.

Среди основных химических свойств материала можно выделить следующие:

  • Сплав отлично противостоит газам и большим атмосферным нагрузкам.
  • Высокий показатель сопротивляемости негативному воздействию коррозии.
  • Материал не реагирует на агрессивную кислотную среду.
  • Инертность к воздействию пресной и морской воды.

Не менее интересными являются физические свойства. Даже если мельхиор будет использоваться при температуре до +150 °C, он всё равно не окислится. Этот материал можно подвергать спайке. Мельхиор разрешено полировать. На производстве столовые приборы из этого материала покрывают тонким слоем серебра либо золотым напылением. В противном случае необработанный сплав может придавать пище характерный металлический привкус.

Плотность материала находится в пределах 8900 кг/м³, что ниже, чем у серебра. Температура плавления зависит от марки используемого сплава, но чаще всего итоговое значение находится в пределах от 1180 до 1240 °C. Удельное электрическое сопротивление мельхиора в 20 раз превышает показатели меди — 285 нОм*м. Если в составе снижено содержание марганца и железа, тогда сплав будет проводить ток. Прочностные показатели описываемого сплава можно сравнить со сталью. Временное сопротивление на разрыв достигает отметки 400 МПа. На производстве сплав проходит термическую обработку, так как это позволяет существенно повысить твёрдость.

Никелевые сплавы

В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.

Все сплавы никеля разделяются на четыре большие группы:

  • Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, ней­зильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
  • Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
  • Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, пре­цизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
  • Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.

Сплав с кремнием

Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 – 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.

Сплавы никеля и марганца

Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.

Алюмель

Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.

Хромели

Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.

Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.

В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.

Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий