Сварка нержавеющей стали

Полярность при сварке без газа

Поляр­ность – это направ­ле­ние пото­ка элек­три­че­ства в цепи сва­роч­но­го аппарата.

При пря­мой поляр­но­сти элек­трод (про­во­ло­ка) – это минус, а сва­ри­ва­е­мый металл (зазем­ле­ние) – это плюс. При обрат­ной поляр­но­сти элек­трод – плюс, а сва­ри­ва­е­мый металл – минус.

Для свар­ки при помо­щи порош­ко­вой про­во­ло­ки исполь­зу­ет­ся пря­мая поляр­ность (про­во­ло­ка – минус, зазем­ле­ние — плюс).

При свар­ке с газом – элек­трод (+), масса (-).

Поляр­ность, с кото­рой будет нор­маль­но рабо­тать порош­ко­вая про­во­ло­ка, зави­сит от её соста­ва. Быва­ют и такие, кото­рые будут нор­маль­но сва­ри­вать с любой полярностью.

В боль­шин­стве слу­ча­ев, при свар­ке без газа сва­роч­ный аппа­рат дол­жен быть настро­ен с пози­тив­ным зазем­ле­ни­ем и нега­тив­ным элек­тро­дом. Это даст боль­ше мощ­но­сти для плав­ле­ния порош­ко­вой проволоки.

Как варить нержавейку в домашних условиях?

Сварка нержавейки в домашних условиях доступна любому сварщику. Для этого требуется подготовить инверторный аппарат. Он подойдёт для соединения труб из алюминия, тонких листов, деталей сложной формы. Рекомендации для проведения работ:

  1. Внимательно наблюдать за швом, чтобы не образовывалось место проплавки.
  2. Небольшой зазор в сварном стыке помогает создать оптимальный показатель усадки.
  3. Для соединения металлических листов большой толщины, нужно использовать электроды большего диаметра.
  4. Выбрать величину сварочного тока проще с помощью специальных таблиц, которые можно найти в интернете.
  5. Для охлаждения швов желательно использовать медные пластинки.

Новичку необходимо потренироваться настраивать, работать со сварочным аппаратом на черновых деталях.

Сварка нержавеющей стали электродом

Как варить нержавейку инвертором?

Сварка нержавейки инвертором выполняется в определённой последовательности:

  1. Очистить рабочие поверхности от налёта, грязи, декоративных покрытий, масла, ржавчины.
  2. Обработать кромки деталей если их толщина превышает 4 мм. Они срезаются под углами 45 градусов. Если нужно сваривать тонкую нержавейку, скосы не нужны.
  3. Чтобы создать высокопрочное соединение, на которое будут воздействовать высокие нагрузки, необходимо прокалить электроды для инвертора заранее. Их нужно разогреть до 170 градусов.
  4. Если нужно соединить детали толщиной более 7 мм, нужно прогреть их заранее до 150 градусов.
  5. Для начала ручной сварки нержавейки инвертором, необходимо наложить прихватки. Вести шов нужно с наклоном, удерживая угол от 45 до 60 градусов. Движения выполнять или на себя, или в сторону.

После выполнения работ металл должен остыть при комнатной температуре.

Сварка тонкой нержавейки

Технология сваривания тонких листов нержавеющей стали отличается от классического метода работы с плавящимися электродами. Пошаговая инструкция:

Подготовить соединяемые поверхности. Очистить их от грязи, налёта, мусора. Выложить флюс на обработанные листы. Нагреть их до 250 градусов. Поверхность должна поменять цвет. Электрод медленно подаётся на заготовки

Важно быстро выполнять работу, чтобы не проплавить тонкие листы. После выполнения работ нужно быстро остудить заготовки, чтобы готовый шов не покрылся ржавчиной

После выполнения работ нужно быстро остудить заготовки, чтобы готовый шов не покрылся ржавчиной.

Сварка нержавеющей стали может выполняться как в домашних условиях, так и на производстве. Для этого применяются разные способы, оборудование, расходные материалы

Важно учитывать определённые особенности, правильно выбирать сварочный режим

Проволока

Многие специалисты утверждают, что сварка МИГ – это дуговая сварка в защитном газе плавящимся электродом. В принципе, так оно и есть, только роль электрода выполняет проволока, чем и повышается производительность. Напомним, что при работе в режиме ручной дуговой сварки приходится постоянно менять израсходованные штучные электроды. Проволоке принадлежит одна из ключевых ролей, поэтому ее необходимо подобрать, исходя из начальных условий. Традиционно разделяют четыре вида проволоки:

  1. стальную;
  2. алюминиевую;
  3. омедненную;
  4. порошковую.

Омедненная и порошковая считаются самыми популярными, так как они более универсальные и, к тому же, удобны в применении.

  • Во-первых, такие присадки доступны в любом специализированном магазине.
  • Во-вторых, при высокой скорости работы практически отсутствуют брызги.

Порошковой проволокой могут работать не только профессионалы, но и начинающие любители. Компоненты в виде порошка, представленные различными химическими соединениями, ферросплавами и рудами, существенно облегчают процедуру сварки. Единственное неудобство заключается в том, что нельзя нарушать целостность такой проволоки, выполненной в виде трубки.

Стальная и алюминиевая проволока используется для режима МАГ, то есть, в среде углекислого газа. Если нет достаточного опыта работы с mig сваркой, то каждый раз придется уточнять, какой материал использовать для того или иного металла.

Когда использовать сварку МиГ:

В процессе газовой сварки с металлической вставкой используется расходуемая проволока, которая работает как присадочный металл, так и как электрод.

Процесс сварки mig используется ниже,

  1. В автомобильной промышленности и бытовых целях широко применяется газовая сварка металлических вставок.
  2. Сварка MIG может использоваться для очень толстого металлического листа, толщина металлического листа может варьироваться до 40 мм.
  3. Материалы, которые используются в методе сварки MIG, – это стали, цветные металлы.

Применение сварки mig:-

  • Сварка MIG используется для максимальных классификаций сварки листового металла.
  • Изготовление стальной конструкции и сосуды под давлением.
  • Индустрия благоустройства дома и автомобильная промышленность.

Изображение – изображение сопла горелки GMAW в разрезе. (1) Рукоятка горелки, (2) Литой фенольный диэлектрик (показан белым) и вставка с резьбовой металлической гайкой (желтая), (3) Диффузор защитного газа, (4) Контактный наконечник, (5) Выходная поверхность сопла; Кредит изображения –

Ремонтируем чайник из нержавейки:

Довольно частым явлением, и наглядным примером, когда нужно паять изделие из нержавеющей стали, является ремонт чайника из нержавейки. И если у вас появилась течь, выбрасывать его, или торопиться бежать за новым чайником не стоит. Правда сразу следует отметить что, нержавейка очень-очень плохо паяется, прихватить даже маленькую дырочку, порою довольно трудно (в зависимости от качества нержавейки), но всё возможно.

Чайник из пищевой нержавейки

Для того что бы запаять чайник из нержавеющей стали вам понадобится, ортофосфорная кислота или специальный флюс для пайки нержавейки, пищевое олово (оно должно быть безопасным для организма человека! Если чайник вам нужен для питьевой воды), наждачная бумага и стоваттный паяльник.

Всё что нужно

Сначала нужно хорошо зачистить наждачкой место пайки, если это чайник, то нужно убрать накипь возле места протечки.

Зачищаем чайник наждачной бумагой

А вот теперь начинается самое интересное! Для того что бы припой «прилип» к нержавеющей стали нужно её хорошо прогреть, но в тоже время ещё и обработать ортофосфорной кислотой – а она может при этом испариться, так ещё и оставить въевшиеся в метал окислы, и опять всё по новой нужно будет чистить. Потому прогревать саму нержавеющую сталь не следует. Секрет заключается в паяльнике, а точнее сказать в жале паяльника.

Как правило, если вы используете паяльник мощностью сто ватт с медным жалом, то оно очень быстро перегревается, припой испаряется, после чего моментально образуется окалина, и пайка уже невозможна (да и теплопередача жала падает, потому как окалина хуже проводит тепло). Но выход есть, воспользуйтесь проверенным мудрым советом. Во-первых, если у вас жало заточено под конус или сплюснуто, укоротите его, ровно спилив пилой по металлу, оставив около 2-3 сантиметров выступающей меди. Потом доведите поверхность жала до медного блеска (я использовал для этого обыкновенный мелкозернистый напильник).

Дотачиваем отпиленное жало Довели жало до медного блеска

А дальше начинается самое интересное, во-первых, надо всё заранее подготовить потому как после нагрева паяльника, действовать придётся очень быстро и ловко. И вот почему, температура паяльника очень велика, жало перегревается моментально, и как бы вы его хорошо не залудили, всё ровно олово испаряется с поверхности жала довольно быстро.

Олово испаряется и поверхность жала становится матовой

Потому делайте, так как делал я: Нанесли ортофосфорную кислоту на место пайки, потёрли жало об напильник, залудили его, набрали на жало олова и сделали пайку, и тут же снова наберите олова на жало. Толстый слой олова не успеет испариться и жало не нужно будет часто лудить, но если всё-таки окалина появилась, то снова потрите жало об напильник до появления меди и быстро залудите его

Повторяю, всё надо делать очень быстро, тогда окалины не будет, а теплопередачи жала паяльника будет достаточно для качественного прогрева места пайки – что немаловажно!

При пайке нержавейки, шов не всегда может получиться эстетически красивым. А ещё для пущей надёжности, желательно дно чайника пропаивать полностью, что бы исключить протечку в другом месте.

Получившийся шов

После того, как вы пропаяете все необходимые места чайника, чисто для приемлемого внешнего вида, шов можно заполировать наждачкой или напильником. После чего обязательно протереть спиртом что бы удалить остатки кислоты окислов, и окалины.

  1. Пластмассовая заклепка, как использовать?Заклёпка, весьма распространённое не разъёмное соединение. В самом обыкновенном.
  2. Гибка оргстекла. Как изогнуть оргстекло?Органическое стекло достаточно распространённый материал, часто применяемый во многих отраслях.
  3. Аппликация своими рукамиЕщё со школы многим из вас известно такое простое направления.
  4. Простой и удобный очиститель для жала паяльникаКаждый радиолюбитель выбирает для себя свой особый дизайн подставки под.
  5. Изготовление многоразовых гибких форм из силикона своими рукамиВ интернете описано уже достаточно много способов создания многоразовой формы.

Подбор напряжения и скорости подачи проволоки

Устанавливаемые значения скорости подачи проволоки (которая определяет величину тока сварки, I) и напряжения (U) зависят от толщины свариваемого металла, типа сварного соединения, пространственного положения, типа и диаметра сварочной проволоки, типа защитного газа которые планируется использовать. Эти контрольные значения можно найти в таблицах справочников или нормативной документации. Данные таблицы помогают найти корректную начальную точку сочетания этих параметров. Данная точка должна находиться внутри рабочей области параметров сварки для выбранного сочетания сварочных материалов, и при этом обеспечивать корректную величину тепловложения требуемую для изделия.

  1. Выбранное соотношение параметров
  2. Рабочая области параметров сварки
  3. Тепло выделяемое дугой

При сварке человек не видит, в какой точке рабочей области параметров он находиться. Однако это можно оценить по поведению дуги и результату сварки. Если параметры подобраны корректно, дуга стабильна и имеет правильную длину. При этом тепловложение в изделие оптимально и брызг не образуется. Наплавленный валик имеет гладкую поверхность и плавный переход к основному металлу. Рассмотрим, что произойдет, если рабочая точка выйдет из рабочей области параметров. Для примера возьмем сварку «короткой дугой» в углекислом газе. Сначала поднимем напряжение, оставив скорость подачи неизменной.

Для данной скорости подачи проволоки напряжение слишком велико. Подающий механизм подает в зону сварки меньшее количество проволоки, чем может быть расплавлено. На конце проволоки появляется крупная капля, совершающая небольшие вращательные движение и появляются брызги. Сварка становиться медленнее, а на кромках образуются подрезы. Теперь, чтобы вернуться в рабочую области параметров сварки, начнем поднимать скорость подачи проволоки.

Дуга опять становиться стабильной, но рабочая точка находиться в верхней зоне рабочей области. Для нашего изделия тепловыделение дуги оказывается очень высоким. Возрастает риск получения прожога, особенно на тонком изделии. Теперь, не меняя скорости подачи проволоки, начинаем снижать напряжение до исходного уровня, что приводит к выходу рабочей точки из рабочей области параметров сварки. Для данной скорости подачи проволоки напряжение оказывается слишком мало. Выделяемого тепла недостаточно чтобы расплавить электродную проволоку.

В результате дуга укорачивается на столько, что проволока начинает утыкаться в изделие. При этом чувствуется, что горелка пытается, как бы сама себя поднимать. Такое низкое тепловыделение приводит к тому, что формируется достаточно гладкий, но колеблющейся по ширине наплавленный валик с высоким округлым усилением и невысокой глубиной проплавления.

Теперь будем уменьшать скорость подачи проволоки, опять возвращаясь в рабочую зону. Возвращаем рабочую точку в более нижнюю часть рабочей зоны, чем это было установлено в самом начале. Дуга опять становиться стабильной, но тепловыделение для нашего изделия очень низкое. В результате холодный наплавленный валик ровно не растекается по свариваемой поверхности. В дополнение можно получить недостаточное проплавление.

Находим оптимальную рабочую точку, параллельно поднимая скорость подачи проволоки и напряжение. Другими словами в качестве резюме можно сказать, что в рабочей точке должно поддерживаться правильное соотношение между скоростью подачи проволоки и напряжением и выполняться два условия.

  1. Рабочая точка всегда должна оставаться внутри рабочей области параметров сварки для выбранной комбинации сварочной проволоки и защитного газа.
  2. Рабочая точка должна находиться на уровне обеспечивающим такое тепловыделение, которое необходимо для оптимального проплавления свариваемого изделия.

В дополнении к скорости подачи проволоки и напряжению, на сварочном источнике можно устанавливать третий параметр сварки называемой индуктивностью. Она изменяется подключением сварочного кабеля к одному из двух или трех разъемов вторичной цепи источника питания либо плавной регулировкой, так называемой электронной индуктивности.

Снижая индуктивность, мы уменьшаем тепловложение в изделие, увеличиваем частоту коротких замыканий проволоки на сварочную ванну, и повышаем вязкость расплавленной ванны, что весьма желательно при сварке небольших толщин. При сварке больших толщин требуется большее тепловложение, поэтому надо устанавливать более высокое значение индуктивности. При сварке в режиме «струйного переноса» индуктивность не оказывает ни какого влияния на процесс сварки.

Общая информация

Сварка и резка полуавтоматом нержавеющей стали с применением защитного газа — это технология, которая давно зарекомендовала себя как одна из самых оптимальных. У данной технологии есть аббревиатура MIG/MAG, что означает «сварка металла инертным газом» или «сварка металла активным газом» соответственно.

Суть этой технологии проста: для сварки применяется газ и сварочная проволока, которая непрерывно подается в зону сварки и формирует шов. В процессе формируется дуга, которая плавит металл и позволяет расплавленной проволоке смешаться с заготовкой для формирования шва. Газ выполняет защитную функцию, не позволяя кислороду проникнуть в зону сварки и окислить металл.

Чтобы сформировать качественный шов, необходимо правильно настроить режим сварки. Режим сварки — это совокупность настроек. А именно, сила тока, скорость подачи присадочного материала, сам тип присадочного материала, а также выбор газа и его оптимальный расход.

Зачастую для MIG/MAG сварки нержавеющей стали применяют смесь из углекислого газа и аргона. Сварка нержавейки полуавтоматом в среде аргона или сварка нержавейки полуавтоматом в среде углекислого газа в чистом виде применяется редко.Порой углекислый газ заменяют кислородом, но это необходимо для выполнения определенных технологических требований и малоприменимо в любительской сварке.

Есть три способа сварки нержавеющей стали с применением технологии MIG/MAG: это сварка с применением короткой дуги, с помощью технологии струйного переноса или импульсная сварка. Выбор способа зависит от толщины металла. Для тонкой нержавейки подойдет первый способ, для сварки металла толщиной до 3 мм подойдет метод струйного переноса, ну а импульсная сварка эффективна при сварке нержавеющей стали толщиной от 3 мм и более.

Достоинства и недостатки метода

MIG/MAG сварка нержавеющей стали имеет множество преимуществ по сравнению с другими методами, вроде MMA или TIG. Мы перечислим некоторые из них.

Прежде всего, технология MIG/MAG отличается высокой производительностью. Работа выполняется куда быстрее, чем при использовании других технологий. При этом качество швов остается на достойном уровне.

Также отметим, что при сварке не наблюдается большое количество дыма. Что очень удобно при сварке в помещении.

Из недостатков лишь необходимость применения газового баллона, что зачастую приводит к проблемам с транспортировкой. У вас не получится просто перенести баллон на необходимую локацию, поскольку его вес слишком велик. Но этого недостатка нет разве что у MMA технологии, которая малоприменима для сварки нержавеющей стали.

Мы считаем, что необходимость применения газовых баллонов при MIG/MAG сварке — это ничтожный минус по сравнению с возможностью производить сварку быстро и качественно. В крайнем случае баллон можно установить на специальную тележку и транспортировать в нужное место.

Обязательно ли использовать газ?

Прочитав информацию выше, вы наверняка задались вопросом: «А возможна ли сварка нержавейки полуавтоматом без газа, но с применением MIG/MAG технологии?». Ответ: да, возможна. Газ можно заменить специальной порошковой проволокой. Она заправляется в подающий механизм так же, как и обычная присадочная проволока, и позволяет работать без газа. Порошковая проволока состоит из наружного металлического слоя и внутренней сердцевины, заполненной флюсом. При плавлении внешнего слоя флюс высвобождается и защищает сварочную зону от окисления.

Казалось бы, идеальный расходный материал. Но у всего хорошего есть недостатки. Порошковая проволока хоть и удобна для сварки, но на сегодняшний момент не способна обеспечить такую же защиту сварочной ванны, как газ. Поэтому швы при использовании порошковой проволоки получаются менее качественными и долговечными. Этот способ применим разве что при экстренной сварке в очень труднодоступных местах, куда просто невозможно привезти даже самый маленький баллон с газом.

В остальных случаях мы все же рекомендуем классическую сварку газом и нержавеющей проволокой.

Безопасная работа

Прежде чем начать сварку, надо принять меры по безопасности. Сварщику необходимо иметь защитные средства:

  • краги из искростойких материалов;
  • маска – тип „Хамелион“ или обычная со светофильтром;
  • роба;
  • обувь из кожи и войлока;
  • очки для защиты глаз от металлических частиц при ошкуривании.

Маска „Хамелион“ с автоматической регулировкой – затемняется только при зажигании дуги. Степень затемнения можно настроить самостоятельно.

При работе следует соблюдать пожарную и электробезопасность. В рабочем помещении необходимо установить вентиляцию, а в гараже или домашней мастерской работать при открытых дверях и окнах.

Выбор подходящего аппарата

Нержавейка – это высоколегированная сталь, содержащая в себе много хрома, титана, никеля и молибдена. Металлы предохраняют от коррозии и улучшают общие характеристики изделий. Сваривать материал сложно по причине низкой теплопроводности. Нужно применять пониженное напряжение и ток обратной полярности.

Для домашнего пользования годится любая марка инвертора. Умельцы часто собирают модели, не уступающие заводским аналогам.

Для сварки нержавеющей стали необходимо устройство с функциями:

  • «Форсаж», снижающий напряжение дуги и увеличивающий ток;
  • ПВ – длительность работы в непрерывном режиме.

Кабель выбирают длиной до 6 м. Электропроводка больших размеров сильно нагревается. При внезапных скачках в сети работоспособность устройства должна сохраняться. Лучше взять инвертор, который работает при пониженных температурах.

Коротко о главном

Ручная дуговая сварка или ММА – это классическая сварка с помощью электрода с обмазкой. Соединение осуществляется плавлением металла в месте стыка заготовок за счет горения дуги. Осуществляться она может как переменным, так и постоянным током. Помимо нее существует также MIG/MAG- и TIG-технологии – это значит, что сварка выполняется плавящимся или неплавящимся электродом в защитной газовой среде, соответственно.

Плюсы ММА-сварки:

  1. Варка любых металлов. 
  2. Универсальность и легкость применения. 
  3. Нечувствительность к внешним факторам. 
  4. Доступность.

Недостатки выражаются в низкой производительности, сложности освоения техники и вредности. При этом могут использоваться 3 типа аппаратов – трансформаторы, выпрямители и инверторы. У каждого из них есть ряд плюсов и минусов. Технология ММА-варки имеет свои особенности.

Вопрос

3 Технология ММА – электроды для сварки нержавеющей стали

Самой распространенной считается сварка покрытыми электродами (ММА). Такой метод очень часто применяется домашними мастерами. Он подходит для тех случаев, когда к качеству сварки не предъявляется очень жестких требований

Важно только грамотно подобрать электроды для нержавеющей стали, которые делятся на два типа:

  • из двуокиси титана с рутиловым покрытием: ими можно осуществлять сварку на постоянном (полярность – обратная) и переменном токе, подобные электроды характеризуются малым разбрызгиванием при использовании и стабильной дугой, обеспечивающей постоянное горение;
  • с основным покрытием (как правило, оно создается карбонатами магния и кальция): годятся для применения на постоянном токе (полярность – обратная).

Процесс сварки

Если вы планируете сварить тонкую нержавейку то ей нужно в четверть меньше тока нежели при сварке обычной стали, так как такой металл чувствителен к температуре.

Ещё допустимая длинна электрода до 35 сантиметров. И снова же если вы перегреете метал, то он больше не будет антикоррозийным. Не превышайте, при работе с нержавейкой, температурную отметку в 500 градусов.

Как запаять нержавейку самостоятельно

Если на выходе вы хотите получить качественную и крепкую работу, то придерживайтесь следующих правил.

Применяйте ток с обратной полярностью это позволит крепко соединить тонкую нержавеющую сталь. Когда варите внимательно, следите за швом. ОН не должен прославиться, а если так случилось, значит вы что-то сделали не верно, а переделать шов будет уже очень не легко, новичку за это лучше даже не браться. Не делайте сварные стыки глухими, оставьте небольшой зазор. Если вы занимаетесь сваркой нержавейки дома то вам подойдут электроды

Если вы хотите сплавить габаритные пласты метала возьмите электрод потолще и наоборот

Немало важно правильно настроить силу тока сварки лучше всего посмотрите таблицу, что мы предоставили выше. В ней есть всё необходимое при сварке информацию в зависимости от толщины материала

Ещё помните, что лучше всего уменьшить ток в четверть раз при работе с нержавейкой, при этом обычная низкоуглеродная сталь требует большей силы тока. Не поленитесь и постойте над швов до тех пор пока он не остынет. Это сделает его антикоррозийные свойства ещё сильнее. Когда охлаждаете шов и воспользуйтесь медными прокладками.

Как защитить шов на нержавейке

https://youtube.com/watch?v=Zngv3j_zH4g

Нержавеющая сталь особенно чувствительна к процессу очистки когда сварка окончена. Зачистка-это процесс очищения шва от окисленного шара, который и угрожает тому что нержавеющая сталь может начать ржаветь.

Так что важно проконтролировать, что бы в этот незащищенный период ничего чужеродного не попало на зачищенную зону, но в устоях реальной жизни это очень сложно и даже невозможно. Но конечно есть метод который вас спасет, ну или как минимум постарается спасти. Когда вы зачистите зону, то обработайте её специальным составом из синтетических масел и пассивирующих присадок

Когда вы зачистите зону, то обработайте её специальным составом из синтетических масел и пассивирующих присадок

Но конечно есть метод который вас спасет, ну или как минимум постарается спасти. Когда вы зачистите зону, то обработайте её специальным составом из синтетических масел и пассивирующих присадок.

Сферы применения сварки нержавейки

Изделия из нержавеющей стали встречаются нам буквально повсюду. Начиная от кухонной утвари и заканчивая сложным оборудованием, использующимся на производстве. Например, хромоникелевая аустенитная сталь являются сырьем для производства крепежных элементов и мелких монет. Этот материал достаточно прост в обработке.

Так же широкое применение имеет мартенситная сталь. Из нее изготовляют знакомые каждому кухонные ножи. Ее не сложно сваривать, если иметь определенные навыки и опыт работы.

Значительно более сложный материал для работы – ферритные сплавы. Их используют для производства емкостей для едких кислот. Их невозможно заменить на химическом производстве, но новичку сплавить такой металл практически невозможно. Наиболее часто используемые способы сварки в данном случае не подходят. Необходимо специальное оборудование и профессионализм.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий