Возвратно-поступательный механизм: виды, устройство, применение

Сборка привода с цепной передачей

Перед монтажом проверяют наличие сигнальной лампы, от покупки которой не стоит отказываться с целью сэкономить средства. Бережливость в этом плане не оправдана, т. к. повышает риск опасности для людей.

Пошаговая инструкция:

  • Монтаж привода. Его крепят на основание, которое есть в комплекте, затем конструкцию помещают между каретками. Определяют местоположение зубчатой рейки в центре шестеренки. Двигатель фиксируют гайками.
  • Установка рейки. При открытых воротах рейку приваривают к створке так, чтобы на ней было место для торцевых реле. Привод разблокируют. Створку передвигают на 1 м, соединяют шестеренки и приваривают вторую шестерню. Регулируют промежуток между шестеренками и рейкой, чтобы был плавный ход, а полотно не стучало.

Причины поломки полуосей

В процессе эксплуатации транспортного средства полуось постоянно работает под довольно серьезными нагрузками, среди которых:

  • изгибающий момент, который появляется из-за воздействия на автомобиль силы тяжести;
  • касательная реакция, возникающая при начале движения и торможении автомобиля;
  • боковая сила из-за заносов машины;
  • боковые нагрузки, возникающие из-за воздействия сильного бокового ветра.

Полуоси испытывают практически экстремальные нагрузки при перемещении автомобиля по грунтовым дорогам, а также по разбитым шоссе.

Поломка полуоси приводит к полной или частичной потере управляемости автомобилем, поэтому правильный, тщательный и своевременный уход за ними имеет большое значение.

В процессе эксплуатации ведущего моста нужно периодически проверять состояние размещенных на полуосях подшипников. Их долговечной работы можно добиться, обеспечив полноценную защиту от проникновения грязи и жидкостей.

Как сделать надежный автоподъемник своими руками

Поднять машину непросто, поэтому необходимо заранее прочитать инструкцию.

Расчет размеров и создание чертежа

Для начала нужно определиться с размерами оборудования для работы с автомобилями.

Выбор размера автоподъемника зависит от площади гаража, в котором он будет использоваться. Средняя высота устройства составляет три с половиной метра, а ширина — три метра. Оборудование с такими габаритами способно поднять автомобиль массой 3-4 тонны.

Необходимые компоненты и инструменты

Определившись с размерами автоподъемника, можно приступать к подготовке необходимых инструментов и материалов. Для работы вам понадобятся:

  • сварочный аппарат для соединения металлических деталей;
  • дрель;
  • дрель;
  • рулетка для измерения размеров деталей устройства.

К материалам, из которых изготовлено устройство, относятся:

  • стальные уголки шириной восемь сантиметров;
  • железные пластины, толщина которых должна составлять 1-2 сантиметра;
  • червячный редуктор.

Инструкция по сборке

На начальном этапе создания лифта в стены гаражной ямы устанавливают стальные уголки. Далее на их полочки устанавливают металлическую пластину и закрепляют на поверхности. Сверху устанавливается редуктор, после чего на приводном валу фиксируется шпонка.

После установки редуктора в поверхности пластины просверливаются отверстия, через которые будет проходить цепь. При установке цепи на вал надевается звездочка. Для установки второй цепи с противоположной стороны пластины проделайте такие же отверстия.

Кулисный механизм

На рис. 9, г представлена схема кулисного механизма, широко применяемого, например, в поперечно-строгальных и долбежных станках. С ползуном 1, на котором закреплен суппорт с режущим инструментом , шарнирно связана при помощи серьги 2 качающаяся влево и вправо деталь 4, называемая кулисой. Внизу кулиса соединена посредством шарнирного соединения 6, причем своим нижним концом она поворачивается около этой оси во время качаний.

Качания кулисы происходят в результате поступательно-возвратных перемещений в ее пазу детали 5, называемой кулисным камнем и получающей движение от зубчатого колеса 3, с которым она соединена. Зубчатому колесу 3, называемому кулисной шестерней, вращение передается колесом, закрепленным на ведущем валу. Скорость вращательного движения кулисного колеса регулируется коробкой скоростей, связанной с электродвигателем.

Длина хода ползуна зависит от того, в каком виде установлен на кулисной шестерне кулисный камень. Чем дальше от центра шестерни расположен кулисный камень, тем больше окружность, которую он описывает при вращении шестерни, и, следовательно, тем больше угол качания кулисы и длиннее ход ползуна. И наоборот, чем ближе к центру колеса установлен кулисный камень, тем меньше все перечисленные движения.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

  • Подвижные.
  • Неподвижные.

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Процесс работы

Поворотный столик своими руками сделать довольно просто. Перво-наперво от вас потребуется нарисовать качественный чертёж. После этого начинаем работать по следующей схеме. Если подшипников у вас два, а не один спрессованный, то забиваем элемент меньшего диаметра в больший с помощью гвоздей. В деревянной плите необходимо вырезать два круга диаметром 20 см. В одном из кругов посредине выпиливается отверстие, в которое забивается подшипник. При этом две части скручиваются и закрепляются саморезами. В центр помещается подшипник.

Стол своими руками оснащается пластиковыми трубками. Трубка должна соединять верхнюю и нижнюю части. Учтите этот момент, когда будете делать чертеж для поворотного стола. При этом трубка должна точно входить в подшипник. Идеальной длиной считается 15 см. Такая трубка не будет слишком короткой или длинной, поэтому вам не придется нагибаться в процессе украшения изделия.

Верхушка делается из металла

Для того чтобы она крутилась, уделите особое внимание ее диаметру. В среднем, диаметр металлического круга должен колебаться в пределах от 30 до 40 см

Если у вас есть возможность сварить элементы, это будет только замечательно. Для тех, кто лишен такой возможности, придумана холодная сварка, которая внешне напоминает пластилин. Поворотный стол для торта требует и кругов, вырезанных из фанеры. Вращающаяся часть устанавливается на трубу, а элементы скрепляются с помощью саморезов.

Столик можно сделать из дерева:

Ну вот и все. Поворотный столик для торта готов. Для того чтобы придать ему эстетичного вида, можно обклеить изделие тонким пластиком. Еще один вариант – приобрести самоклеящуюся пленку. Она продается в магазинах с обоями или расходными материалами. Такая пленка легко клеится и хорошо моется.

Текст

(и 1663916 ОП ИСАНИЕ ИЗОБРЕТЕНИЯ Союз Соввтскмн Социалистически Расл ублажи(23) Приоритет удеретеенай-неинтет СССР ее делам нзобрвтеннй н етнрмтнй(53) УДК 621,837.7 (088.8) убликоваио 25.05,79, бюллетень Мт та опубликования описания 25.05.79 Авторизобретеии Г, Горенчик(71) Заявитель 4) КРИВОШИПНО — КУЛИСНЫЙ ЫЕХАНФИзобретение относится к машиностроению и. приборостроешпо и может быть использовано вустройствах и механизмах, требующих прямолинейного возвратно-поступательного движения исполнительного органа,Известен кривошипно-кулисный мехзнизм, содержащий стойку, основную и шарнирно закрепленную к ее средней части одним своим концомя шарнирно установленную на стойке.вспомогательную кулису с кулисными камнями и криво.шип, шарнирно связанный с кулисным камнем тфвспомогательной кулисы 111.,Недостатком этого механизма является непря.молинейное движение основной кулисы, вследствие конструктивных особенностей механизма.Для обеспечения прямолинейного движенияосновной кулисы кривошип выполнен в видеколенчатого вала, шейки которого размещены вплоскости, проходящей через ось врзщения кри.вошипа, и который шарнирно связан одной своейшейкой с кулисным камнем и другой шарнирно-е кулиснь.м камнем основной кулисы, з длинавспомогательной кулисы, расстояние между осями вращения кривошина и одной ее шейкой и расстояние между осями вращения кривошнпа и другой ее шейкой соответственно равно 1,25- 1,3; 0,08; 0,1 расстояния между осями враще. ния кривошипа и вспомогательной кулисы.На чертеже дана кинематическая схема предлагаемого кривошипно-кулисного механизма.Он имеет стойку 1, основную кулису 2 и шарнирно прикретщенную к ее средней части одним свопы концом и шарнирно устзновленную на стойке 1, вспомогательную кулису 3 с кулис- ными камнями 4 и 5 и кривошип 6, шарнирна связанный с кулисным камнем 5 вспомогзтель. ной кулисы 3. Кривошип 6 выполнен в виде коленчатого взла, шейки 7, 8 которого разме 1 цены в плоскости, проходящей через ось 00, вращения кривошипа 6, и который шарнирно : связан с кулисным камнем 5 одной своей шейкой 7 и другой — шарнирно с кулисным камнем 4 основной кулисы 2. Длина вспомогательной кулисы 3, расстояние между осями 00, и 020 з вращейия кривошипа и одной ее шейки 7 — и расстояние между осями 00, и 00, вращения кривоппша и другой ее шейки 8, соответственно равны 1,25 — 1,3; 0,08; 0,1 расстояния между ося6639 Составйтель В. Быстрыйдактор Т. Шагова Техред И,Асталош Корректор ОЖовинская Тираж 1138 ЦНИИПИ Государств по делам нзобрете113035, Москва, Жаказ 2963 Подан снонного комитета СССРннй н открытийРаушская наб., д. 4/5 ал ППП «Патент», г. Ужгород, ул. Проектная 4 3ми 00, н Оа 0, вращения криво 1 пипа 6 и вспомо. гательной кулисы 3.Механизм работает следующим образом.При вращении кривошипа 6 его шейка 7 обеспечивает качательное движение вспомогательной З кулисы 3 вокруг осиОеОт, а шейка 8 — возвратно-поступательное движение основной кулисы 2, прямолинейность движения которой обеспечива. ется подбором геометрических размеров указанных элементов механизма. 10 Формута изобретенияКривошипно-кулисньгй механизм, содержащий стойку, основную и шарнирно закрепленную к ее 1 средней части одним своим концом и шарнирно установленную на стойке вспомогательную кули- . су с кулисными камнями и кривошип, шарнирно связанный с кулисами камнем вспомогатель 16 4ной кулисы, о т л и ч а ю щ и й с я тем, что, с целью обеспечения прямолинейного движения основной кулисы, кривошип выполнен в виде коленчатого вала, шейки которого размещены в плоскости, проходящей через ось вращения кри

вошнпа, и которы 1 шарнирно связан одной своей шейкой с,кулисным камнем и другой — шарнирно с кулисным камнем основной кулисы, а длина вспомогательной кулисы,»расстояние между осями вращения кривошипа и одной ее шейки и расстояние между осями вращения криво- шипа и другой ее шейки соответственно равны 1,25 — 1,3; 0,08; 0,1 расстояния между осями вращения кривошипа и вспомогательной кулисы.Источники информащи,.принятые во внимание при экспертизе1. Артобалевскнй И

И

Механизмы в современной технике. М., «Машиностроение», 1971, т, 2, механизм У 1000

И. Механизмы в современной технике. М., «Машиностроение», 1971, т, 2, механизм У 1000.

Смотреть

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне.  Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Устройство и принцип действия поршневых насосов

Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней. По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые. По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные.

Схема однопоршневого насоса одностороннего действия представлена на

рис. 3.1.

При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение. За счет разрежения верхний нагнетательный клапан Кн прижимается к седлу, а нижний всасывающий клапан Кв приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру. При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан Кв закрывается, а нагнетательный клапан Кн приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления. При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия. Для устранения этого недостатка применяются насосы двустороннего действия.

На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.

Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D1 и D2. На всасывающей стороне он работает как насос одностороннего действия, на нагнетательной стороне – как насос двустороннего действия. Его отличительной особенностью является то, что за один оборот вала кривошипа он производит всасывание за один ход поршня, а нагнетание жидкости – в течение обоих ходов поршня, вытесняя ее поочередно из камер А и Б в нагнетательный трубопровод.

По направлению оси движения рабочих органов поршневые (плунжерные) насосы могут быть горизонтальными и вертикальными.

Основные понятия, применяющиеся в теории насосов

На рис. 3.4 показана схема насосной установки, состоящей из насосного агрегата 1, в состав которого входят насос и двигатель (на схеме двигатель не показан), всасывающей трубы 2 и напорного трубопровода 3, отводящего из насоса жидкость к месту назначения.

В нижней части всасывающей трубы имеется сетка 4, предохраняющая всасывающую трубу от попадания посторонних предметов и обратный клапан, необходимый для заливки насоса жидкостью перед пуском (в лопастных насосах) и предупреждающий обратное движение жидкости в случае остановки насоса.

В теории насосов применяется ряд терминов и определений, относящихся к насосам всех типов, в том числе и к поршневым насосам.

В работающем насосе жидкости сообщается дополнительная энергия, которая расходуется на преодоление сопротивлений в напорном трубопроводе и на подъем жидкости в резервуар. Вертикальное расстояние hвс от свободной поверхности водоема до центра насоса называется вакуумметрической высотой всасывания. Потери энергии во всасывающем трубопроводе называются потерями при всасывании Вертикальное расстояние hн от центра насоса до уровня воды в резервуаре называется геодезической высотой нагнетания. Потери энергии в напорной линии называются потерями при нагнетании. Сумма геодезических высот hвс + hн, сложенная с суммой потерь энергии в системе, называется напором насосаН:

Напор, развиваемый насосом, представляет собой количество энергии, сообщаемое насосом единице массы перекачиваемой жидкости. Напор измеряется в метрах столба перекачиваемой жидкости или в единицах давления.

Напор, развиваемый работающим насосом, можно определить также по формуле (7.9) с использованием показаний вакуумметра и манометра, которыми обычно оборудуются насосные установки (рис. 3.4):

hм – показание манометра, выраженное в метрах столба перекачиваемой жидкости;

hв – показание вакуумметра, выраженное в метрах столба перекачиваемой жидкости;

Δh – вертикальное расстояние между точками присоединения манометра и вакуумметра, м;

wн, wв – скорости в нагнетательной и всасывающей линиях (в местах присоединения манометра и вакуумметра), м/с;

Одним из основных технических показателей насоса является также давление насоса р:

Напор насоса Н и давление насоса р связаны между собой зависимостью

Просверливаем отверстия в деталях

Как Вы уже заметили, что в деталях присутствуют части пазов, которые необходимо выпилить изнутри. Чтобы выпилить такие детали необходимо просверлить в них отверстия про помощи ручной дрели или, как по старинке проделать отверстия шилом. Кстати, диаметр отверстия должен быть не менее 1-мм иначе можно повредить элементы чертежа, которые, увы, иногда, сложно восстановить. Чтобы при просверливании отверстий не повредить Ваш рабочий стол необходимо подложить под заготовку дощечку, чтобы не повредить рабочий стол. Просверливать отверстия одному всегда трудно и поэтому попросите товарища помочь Вам в вашем деле.

НЕТ КОММЕНТАРИЕВ

Оставьте комментарий, отзыв о работе, жалобу (только конкретная критика) или просто поблагодарите автора.

Не открывается архив или чертеж? Прочитайте, перед тем как писать комментарий.

Пожалуйста, войдите, чтобы добавить комментарии.

Кривошипно-шатунные механизмы

В кривошипно-шатунном механизме вместо кривошипного вала часто применяют коленчатый вал. От этого сущность действия механизма не меняется. Коленчатый вал может быть как с одним коленом, так и с несколькими (б, в).

Видоизменением кривошипно-шатунного механизма может быть также эксцентриковый механизм (г). У эксцентрикового механизма нет ни кривошипа, ни колен. Вместо них на вал насажен диск. Насажен же он не по центру, а смещено, то есть эксцентрично, отсюда и название этого механизма — эксцентриковый.

В некоторых кривошипно-шатунных механизмах приходится менять и длину хода ползуна. У кривошипного вала это делается обычно так. Вместо цельного выгнутого кривошипа на конец вала насаживается диск (планшайба). Шип (поводок, на что надевается шатун) вставляется в прорез, сделанный по радиусу планшайбы. Перемещая шип по прорезу, то есть удаляя его от центра или приближая к нему, мы меняем размер хода ползуна.

Ход ползуна в кривошипно-шатунных механизмах совершается неравномерно. В местах “мертвого хода” он самый медленный.

Кривошипно-шатунные — механизмы применяются в двигателях, прессах, насосах, во многих сельскохозяйственных и других машинах.

Кулисные механизмы

Вместо кулисы можно применить стержень, заключенный в направляющую втулку. Для прилегания к диску эксцентрика стержень снабжается нажимной пружиной. Если стержень работает вертикально, его прилегание иногда осуществляется собственным весом.

Для лучшего движения по диску на конце стержня устанавливается ролик.

Кулачковые механизмы

Но бывают дисковые кулачки другой конструкции. Тогда ролик скользит не по контуру диска, а по криволинейному пазу, вынутому сбоку диска (б). В этом случае нажимной пружины не требуется. Движение ролика со стержнем в сторону осуществляется самим пазом.

Кроме рассмотренных нами плоских кулачков (а), можно встретить кулачки барабанного типа (в). Такие кулачки представляют собой цилиндр с криволинейным пазом по окружности. В пазу установлен ролик со стержнем. Кулачок, вращаясь, водит криволинейным пазом ролик и этим сообщает стержню нужное движение. Цилиндрические кулачки бывают не только с пазом, но и односторонние — с торцовым профилем. В этом случае нажим ролика к профилю кулачка производится пружиной.

В кулачковых механизмах вместо стержня очень часто применяются качающиеся рычаги (в). Такие рычаги позволяют менять длину хода и его направление.

Длину хода стержня или рычага кулачкового механизма можно легко рассчитать. Она будет равна разнице между малым радиусом кулачка и большим. Например, если большой радиус равен 30 мм, а малый 15, то ход будет 30-15 = 15 мм. В механизме с цилиндрическим кулачком длина хода равняется величине смещения паза вдоль оси цилиндра.

Благодаря тому, что кулачковые механизмы дают возможность получить разнообразнейшие движения, их часто применяют во многих машинах. Равномерное возвратно-поступательное движение в машинах достигается одним из характерных кулачков, который носит название сердцевидного. При помощи такого кулачка происходит равномерная намотка челночной катушки у швейной машины.

Шарнирно-рычажные механизмы

На рисунке показан шарнирно-рычажный механизм, связанный с другими механизмами. Рычажный механизм получает качательное движение от кривошипно-шатунного и передает его ползуну. Длину хода при шарнирно-рычажном механизме можно увеличить за счет изменения длины плеча рычага. Чем длиннее плечо, тем больше будет его размах, а следовательно, и подача связанной с ним части, и наоборот, чем меньше плечо, тем короче ход.

Устройство для преобразования возвратно-поступательного движения в прямолинейное

Также механизмы возвратно поступательного движения могут применяться для создания условий прямолинейного перемещения исполнительного органа. Ключевыми моментами подобного варианта исполнения назовем:

  1. Существенно повышается надежность.
  2. При изготовлении применяются материалы, характеризующие повышенной износостойкостью.
  3. Подобные механизмы несколько схожи с теми, которые проводят преобразование вращения в возвратно-поступательное перемещение.

Многие конструкции работают на основе применения прямолинейного перемещения. Именно поэтому они получили весьма широкое распространение.

Требования безопасности

При проектировании и монтаже рычажного механизма учитываются требований безопасности. Они во многом зависят от области применения устройства, а также особенностей самого механизма.

Среди особенностей этого момента можно отметить следующее:

  1. При изготовлении должен подбираться материал, который будет соответствовать всем требованиям. Примером можно назвать высокую коррозионную стойкость. При проектировании указывается то, какой именно материал должен применяться при изготовлении устройства. Часто отдается предпочтение углеродистой стали и легированным сплавам. Некоторые элементы могут быть изготовлены из уплотнительных и других материалов, все зависит то конкретного случая.
  2. При проектировании учитывается то, каким образом происходит перераспределение нагрузки. Это связано с тем, что в некоторых местах она будет критической.
  3. Под активным элементом при подъеме тяжелых объектов не должно находится людей, другого оборудования, а также частей самого рычажного механизма. Это связано с высокой вероятностью падения переносимого груза.
  4. Перед непосредственным применением оборудования следует проводить визуальный осмотр, который позволяет определить наличие или отсутствие повреждений. Кроме этого, должно проводится периодическое обслуживание. Даже незначительный дефект может стать причиной существенного снижения прочности рычажного механизма. Периодическое обслуживание позволяет существенно продлить срок службы устройства.
  5. Запрещается применять механизм не по предназначению. Перед каждым его использованием проверяется надежность крепления. Нагрузка должна оказываться на конструкцию соответствующим образом, так как в противном случае происходит неправильное перераспределение силы. Именно поэтому при проектировании указывается то, каким образом устройство должно устанавливаться и как использоваться.
  6. При применении учитывается то, на какую максимальную нагрузку рассчитано оборудование. Слишком высокий показатель может стать причиной, по которой происходит повреждение основных элементов. При проектировании учитывается то, какая нагрузка может оказываться на конструкцию.

Как правило, соответствующее руководство по применению устройства составляется непосредственно на месте его эксплуатации в соответствии с установленными нормами. Это связано с тем, что рычажные механизмы получили весьма широкое распространение, могут устанавливаться в качестве составного узла другого оборудования.

При этом узел оборудован тремя важными независимыми системами:

  1. Гидравлическая. Эта часть устанавливается в большинстве случаев для передачи усилия. Гидравлика получила весьма широкое распространение, так как она предназначена для непосредственной передачи усилия. Гидравлическая часть основана на подаче специальной жидкости, при помощи которой проводится передача усилия. Гидравлика несет с собой опасность по причине того, что подвижный элементы могут передавать усилие. Поэтому все основные элементы должны быть защищены от воздействия окружающей среды, для чего проводится установка различных кожухов.
  2. Механическая. Механика отвечает за непосредственную передачу усилия и достижения других целей. Неправильная работа устройства может стать причиной повреждения и деформации. Механика также защищается специальными кожухами, так как попадание посторонних элементов запрещается.
  3. Электрическая. Для управления механизмом проводится установка электрической части. Она должна быть защищена от воздействия окружающей среды, так как даже незначительное механическое воздействие может стать причиной повреждения магистрали электроснабжения.

Опасность с собой несет и электрическая часть, которая состоит из конечных выключателей. Схема подключения предусматривает использование как минимум двух выключателей, устройство должно обесточиваться в случае выхода из строя одного из них.

Механическая система защиты действует путем прерывания подачи масла в гидравлический цилиндр. При этом проводится слив масла с цилиндра в общую емкость. Подобная система срабатывает даже при незначительном повреждении устройства.

Конструкция вибратора: варианты исполнения основных узлов

Вибраторы для бетона существуют разные. По способу взаимодействия с бетоном устройство может быть погружным (глубинным) либо поверхностным. Сделать самостоятельно можно прибор обоих типов. Независимо от того, каков принцип работы вибратора для бетона, конструкция включает такие основные элементы: привод как основной механизм всей системы (запускающий в действие остальные детали), вал и дебаланс, который создает вибрацию.

В качестве привода обычно работают гидравлические, электрические, топливные либо пневматические двигатели. Для сборки самодельного вибратора в домашних условиях обычно выбирают электродвигатели от перфораторов, дрелей, мотокос, болгарок либо другого инструмента.

Основные требования к двигателю: минимальная скорость 3000 оборотов в минуту и более, возможность подключения устройства к стационарной электрической сети с 220 V. Чем мощнее двигатель, тем более эффективным будет проведение работ и менее вероятным перегруз.

В качестве виброустройства используют специальную вибронасадку, которая состоит из стальной ударной части, гильзы, муфты из резины. Сделать такую дома самостоятельно будет трудно, поэтому обычно обходятся без этой детали.

Вибраторы глубинные оснащают гибким валом, передающим движение привода к наконечнику. В толщу бетонного монолита опускается вибрирующая насадка и по всему раствору распространяет колебания. Обычно гибкий вал делают из стальных трубок, подшипников, нержавеющих стержней.

Если работы с бетоном проводятся не в промышленных масштабах, самый простой вариант – самодельный вибратор для бетона из дрели/перфоратора.

Нож из дерева своими руками

Не менее сложное самодельное оружие – это деревянный нож. Его можно выстрогать цельной формой из деревянного бруска, а можно сделать из двух составных частей. Для этого необходимо нанести эскиз заготовки на деревянные бруски, затем вырезать ножовкой. После этого обе части склеиваются в единое целое. Если изготовление деревянного ножа осуществляется в походных условиях, то, как правило, склеивать составные части нечем. Поэтому он вырезается из цельного бруска.

Лезвие хорошо заостряется и тщательно шлифуется, после чего его нужно обжечь на огне, придав ему прочности. Если есть возможность, можно сделать лаковое покрытие ножа, тогда ему не будет страшна влага.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий