Разновидности конструкций теодолитов
Теодолит был изобретен сравнительно давно (1875 г.), но вместе с технологическим прогрессом постоянно совершенствуется и его конструкция. В зависимости от конструкции, рассматриваемые измерительные приборы также подразделяются на три вида:
- Лазерные;
- Электронные;
- Оптические.
Лазерные устройства были изобретены самыми последними и считаются самыми прогрессивными. Они вооружены лазерным лучом, который визуально подсвечивает отметку на измеряемом объекте. Оператор устанавливает настройку такого теодолита особым образом, чтобы луч проходил через две точки. В это время устройство само рассчитывает угол наклона, по которому и проходит лазер. Главный минус таких приборов – крайне ограниченная дальность, ведь с увеличением расстояния лазерный луч будет рассеиваться. Основная область применения подобных теодолитов – возведение несущих колонн и постройка мостов.
Электронные приборы оснащены дисплеем на жидких кристаллах и оборудованы системой датчиков. По завершению того, как оператор выставит прибор по точкам, между которых нужно измерить угол, устройство самостоятельно определит наклон и выведет его числовое значение на дисплей. Плюсом таких моделей является улучшенная визуализация измерительных значений, т. к. оператору нет необходимости внимательно всматриваться в шкалу.
Оптические теодолиты были изобретены самыми первыми. Принцип действия их основано на использовании визирной трубки, которая имеет нанесенную на линзу шкалу. По данной шкале и осуществляется ориентирование по размерам угла между несколькими горизонтальными/вертикальными точками измеряемого объекта.
Устройство простейшего теодолита
Хоть простейшими и являются оптические приборы, но работать с ними гораздо сложнее, нежели с электронными или лазерными. Причиной тому является осуществление большей части измерительной работы непосредственно оператором.
Оптический теодолит состоит из:
- Специальной подставки;
- Защитного корпуса;
- Визирной трубы;
- Винтов-регулировщиков наведения;
- Цилиндрического уровня;
- Отвеса (сродни обычному строительному);
- Микроскопа для отчета.
Корпус прибора закрепляется на специальной подставке. В нем установлена визирная трубка, которая совмещена с микроскопом для отчета. Трубка является подвижной и нужна для выцеливания объекта измерения. Прибор также оснащается двумя видами уровней – отвесом и цилиндрическим уровнем. Первый нужен для выставления прямого уровня по вертикали, а второй – по горизонтали.
Трубка визира нужна для осуществления наблюдения за объектом, который находится на некотором расстоянии от устройства. Трубка может давать увеличение в пределах кратности от 15 до 50. Чем выше выдаваемое трубой увеличение, тем точнее прибор. В окуляре трубки вставлена специальная линза, которая оснащена измерительной сеткой. Сетка прочно отрисована на стекле и не стирается даже со временем. В некоторых дорогостоящих приборах она попросту выгравирована.
Эту сетку использует оператор для ориентирования устройства при настройке. Главное ее предназначение – выставление точек на исследуемом предмете по вертикали/горизонтали. Однако, прежде чем приступить к исследованию объекта, оператору необходимо выровнять аппарат с помощью уровня и отвеса. Ведь даже при наличии небольших перекосов в установке прибора можно получить совершенно неточные значения.
Уровни отвечают за правильное положение устройства для производства последующих измерений. Более точными считаются цилиндрические уровни, в бюджетных моделях они круглые. При использовании круглого уровня для правильного выставления аппарата необходимо постараться установить его таким образом, чтобы пузырек воздуха расположился ровно по центру блюдца. При этом необходимо регулировать с помощью винтов длину опор треноги. Большой ошибкой считается пренебрегать такой регулировкой, а вместо этого подкладывать под опоры ненадежные в плане устойчивости предметы (камушки, плитку и т.п.).
Сердцем оптического теодолита является микроскоп. Он имеет большую степень увеличения и оборудован особой делительной сеткой, на которую нанесена шкала. Именно эта шкала указывает градусы с минутами. Более современные и дорогостоящие модели вдобавок еще могут показывать не только минуты, но и секунды. Шкала именуется лимбом. Она определяет точный наклон между двумя нужными точками, которые были установлены с помощью визирной трубки.
Определение высоты здания, строения теодолитом (+ видео)
Для примера рассмотрим формулу определения высоты здания, строения, столба и т.п. Берём теодолитом и мерной лентой отсчёты значений, указанных на рисунке ниже, и записываем их в таблицу (тетрадь).
Теодолит располагают на расстоянии, не меньшем высоты строения, если это невозможно, то как можно дальше от объекта. Далее по формуле h = h1 + h2 = d(tgv1 + tgv2)
вычисляем высоту строения.
Рекомендую: Как отремонтировать маленькую кухню своими руками
Если линия АВ имеет уклон на местности, необходимо рассчитать горизонтальное проложение этой линии, её проекцию на горизонтальную плоскость по формуле d = Scosν
снимая отсчёты как показано на рисунке ниже.
Горизонтальное проложение линии
Как определить высоту сооружения расскажет это видео, с расчётами и формулами.
Назначение и описание устройства
Постройка зданий – это не просто процесс, когда один человек загорается идеей и платит строителям, чтобы ее воплотить. Между этими действиями находится ряд нюансов. Главный – измерение местности, этим занимаются геодезисты. Они приносят с собой специальное оборудование и изучают все особенности ландшафта, прокладку дороги и т.п. На основании полученной информации подбирается оптимальный материал для строительства.
Оптический измеритель (теодолит) – профессиональный прибор высокой точности, который способен провести любые замеры, независимо от особенности местности.
Прибор способен провести съемку под любым углом и на любой поверхности, что делает его незаменимым инструментом при строительстве объектов. Кроме того, аппарат способен с максимальной точностью определить расстояние от точки А до точки Б. Чаще всего результат превосходит даже лазерные дальномеры.
Польза этого инструмента доказана на протяжении веков. Первые прототипы такого устройства появились еще в древней Греции и Риме. Оборудование можно использовать не только на суше, но и при мореплавании или строительстве железных дорог. Даже полярники используют этот аппарат для проведения профессиональных замеров.
Сегодня на рынке встречаются сотни моделей, которые гораздо совершеннее своих предшественников в техническом и ценовом плане. Можно найти изделие с небольшой погрешностью, но минимальной ценой, а также с абсолютной точностью, но и премиальной стоимостью.
Инструкция по приведению теодолита в рабочее положение
Подготовка устройства является очень важным этапом перед проведением измерений.
Центрирование
Действие предполагает предварительный выбор, последующую установку теодолита точно над центром известного геодезического пункта. Обычно его проводят, используя оптический центрир. В иных случаях используют обычный строительный отвес.
Горизонтирование
Предполагает установку горизонтального круга, используя показания уровней в горизонтальное положение.
Горизонтирование теодолита
Его выполняют, завершив дополнительную проверку уровня алидады. Регулировку производят подъёмными винтами.
Фокусировка
Фокусировка устройства предполагает установку чёткого изображения. Точность установки оценивается по чёткости наблюдаемой сетки нитей. Её проводят медленным изменением положения диоптрийного кольца. Перемещение продолжается, пока не будет получено отчётливое изображение каждой нити.
Виды теодолитов
Теодолиты делятся на разные виды, имеют множество классификаций. Они делятся на три вида:
- Точные устройства имеют небольшую погрешность, не более 10 градусов. Как правило, такие устройства являются самыми популярными (таких моделей наибольшее количество, а также стоят относительно недорого, по сравнению с высокоточными).
- Высокоточные теодолиты дают самую маленькую погрешность при измерении, не более 1 градуса. Это оборудование является самым дорогим, оно применяется на очень важных строительных объектах, выполняемых крупными компаниями. Такой тип используется реже всего, так как большинство задач, используемых геодезистами, не требуют такой высокой точности.
- Технические теодолиты дают самую большую погрешность при измерении, не более 60 градусов. Кажется, что это очень много, но такие устройства всё равно используются. Как правило, при строительстве малоэтажных объектов.
По типу бывают:
- Электронные. Являются самыми современными, они оснащены системой датчиков и жидкокристаллическим дисплеем, встроенным процессором, которые производит вычисления согласно полученным показаниями, что практически полностью исключает возможность появления ошибок в измерении. К тому же, электронный теодолит может работать при любых климатических условиях и в ночное время суток, что делает его наиболее удобным.
- Лазерные. Оснащаются лазерным лучом, который высвечивает линию на объекте измерения. Прибор сам определяет угол наклона лазера. Такие устройства имеют ограниченную дальность. Как правило, применяются в общестроительных работах.
- Оптические. Изобретены раньше всего. Он работает с использованием визирной трубы, на линзы которых нанесена шкала. По ней определяется градусная мера угла между несколькими вертикальными и горизонтальными точками объекта измерения.
- Фототеодолиты. Предназначены для точной съемки объектов, которые привязаны к системе координат. Такой теодолит может быть похож на фотокамеру, объектив которой выполняет различные функции, например, зрительной трубы.
- Гиротеодолит. Используется при работе в полевых условиях без привязки к системе триангуляции. Такие устройства имеют возможность точного определения азимута. Погрешность измерения может быть от 6 до 60 градусов. Он может работать в любых погодных условиях. Кроме того, является одним из самых распространённых.
Неповторительные теодолиты
В неповторительных теодолитах лимбы наглухо закреплены с подставкой, а поворот и закрепления его в разных положениях осуществляется при помощи закрепительных винтов либо приспособления для поворота.
Фототеодолит
Фототеодолит или кинотеодолит — разновидность теодолита, объединённого с фото- и/или кинокамерой и другими оптическими системами. Служит для точной фотосъёмки с угловой привязкой геологических объектов и искусственных сооружений, а также для измерения угловых координат летательных аппаратов. Конструктивно может представлять собой кинокамеру, независимую от оптического канала теодолита и жёстко скреплённую с ней или однообъективную зеркальную камеру, видоискатель которой служит оптическим каналом теодолита. Выпускавшиеся ранее кинотеодолиты осуществляли съёмку на крупноформатные фотопластинки высокой разрешающей способности. В настоящее время выпускаются плёночные, пластиночные и цифровые фототеодолиты. Если объект фотографируется двумя и более фототеодолитами, то возможно получить приблизительные данные относительно размера объекта, высоты и скорости полёта.[источник не указан 2803 дня
Модели теодолитов
- В России первую кинофототеодолитную станцию для фотографирования летающих объектов и измерения параметров траектории полёта выпустил Красногорский завод им. С. А. Зверева
- Звенигородская обсерватория оборудована кинотеодолитом КСТ-50 (D 450 мм, F 3000мм)
- Высокоточные кинотеодолиты «ВИСМУТИН» производства БелОМО находятся на космодроме «Байконур».
Гиротеодолиты
Гиротеодолит
Гиротеодолит — гироскопическое визирное устройство, предназначенное для ориентирования туннелей, шахт, топографической привязки и др. Гиротеодолит служит для определения азимута (пеленга) ориентируемого направления и широко используется при проведении маркшейдерских, геодезических, топографических и др. работ. По принципу действия гиротеодолит является и принадлежит к типу гирокомпасов. Ряд схем гиротеодолитов выполнен на принципе гирокомпаса Фуко. Помимо гироскопического чувствительного элемента, гиротеодолит включает угломерное устройство для снятия отсчётов положения чувствительного элемента и определения азимута (пеленга) ориентируемого направления. Угломерное устройство состоит из лимба с градусными и минутными делениями, жёстко связанного с его алидадой. Наблюдение ведётся по штриху, проектируемому на зеркале, которое укреплено на чувствительном элементе. При этом визирная линия зрительной трубы будет располагаться параллельно оси гироскопа. Определение азимута (пеленга), ориентируемого с помощью гиротеодолита направления, производится по шкале, связанной с теодолитом. При наблюдениях гиротеодолитом все измерения относят к отвесной линии в точке наблюдений и к плоскости горизонта. Следовательно, азимут, определённый гироскопически, тождественен астрономическому азимуту. Обычно по конструктивным соображениям отсчётное устройство по горизонтальному кругу располагают под некоторым углом по отношению к оси вращения ротора гироскопа.
Гиростанция
В сущности, тот же гиротеодолит с гирокомпасом Фуко на основе электронного тахеометра.
Электронный
Электронный теодолит — вид теодолита, оснащённого электронным отсчетным устройством.
Тахеометр
См. также: Тахеометр
Разновидность электронного теодолита, оснащенная электронным устройством для вычисления и запоминания координат точек на местности и лазерным дальномером. В отличие от оптического неповторительного, полностью исключает ошибки снятия и записи отсчёта благодаря микропроцессору, выполняющему автоматические расчёты. Электронный теодолит позволяет работать в тёмное время суток.
Тотал станция (Total station)
См. также: Тахеометр
См. также: Тотал станция (Total station)
Электронный тахеометр или оптический теодолит, оснащённый дополнительными устройствами (дальномер, GPS-приемник, контроллер (процессор и/или клавиатура), отдельно вынесенными за основной корпус инструмента.
Взятие отсчётов теодолитом
Отсчёт — это число, состоящие из градусов, минут и секунд (секунд не всегда). Посмотрев в микроскоп увидим верхнюю и нижнюю шкалу, маркированную, соответственно, для снятия отсчётов по вертикальному и горизонтальным кругу.
Есть шкаловый микроскоп и микроскоп-оценщик (штриховой микроскоп). Микроскоп-оценщик сразу показывает нужный угол по горизонтальной и вертикальной оси в градусах и минутах, правда точность немного снижена чем у шкалового микроскопа, поскольку минимальное деление равно 10 минутам, а с точностью до минуты приходится определять на глаз.
Микроскоп-оценщик (слева) и шкаловый микроскоп теодолита
Есть 2 шкалы, которые изменяют своё положение по отношению друг к другу — шкала лимба и шкала алидады. В шкаловом микроскопе на шкалу алидады нанесены цифры от 1 до 6 и 60 делений, соответствующие 60 минутам. Шкала алидады подвижна.
В шкаловом микроскопе значением градусов будет являться то число, которое попало на шкалу алидады для горизонтального угла или, соответственно, вертикального. Значением в минутах будет являться то число, на которое указывает значение градусов шкалы лимба на шкале алидады. К примеру, на снимке ниже мы увидим значения горизонтального и вертикального углов, соответственно, 181 градус 43 минуты и 121 градус 2 минуты
Характеристика устройств
Итак, давайте по очереди рассмотрим оба аппарата и начнём с теодолита.
Теодолит – оптическое устройство из геодезической группы, предназначенное для измерения углов, вертикальных и горизонтальных. Основными составляющими теодолита являются:
- лимб – стеклянный диск с изображением шкалы, на котором указаны градусы от 0 до 360;
- алидада – во многом схожий с лимбом диск, расположенный на той же оси, вокруг которой свободно вращается, имеет свою шкалу;
- оптика – объектив, линза и сетка нитей, необходимые для наведения на измеряемый объект;
- подъёмные винты – применяются для регулировки прибора в процессе наведения;
- система уровней – позволяет установить теодолит в вертикальном положении.
Также можно выделить корпус, в котором располагаются вышеназванные детали, подставку и штатив на трёх ногах.
Теодолит размещается в вершине измеряемого угла таким образом, чтобы центр лимба оказался именно в данной точке. Затем оператор вращает алидаду, чтобы совместить её с одной стороной угла и зафиксировать показания по кругу. После этого алидаду нужно переместить к другой стороне и отметить второе значение. В завершение остаётся лишь вычислить разницу между полученными показаниями. Измерение всегда происходит по одному принципу как для вертикальных, так и для горизонтальных углов.
Существует несколько разновидностей теодолита. В зависимости от класса различают:
- технические;
- точные;
- высокоточные.
В зависимости от конструкции:
- простые – алидада закреплена на вертикальной оси;
- повторительные – лимб и алидада могут вращаться не только отдельно, но и совместно.
В зависимости от оптики:
- фототеодолит – с установленной фотокамерой;
- кинотеодолит – с установленной видеокамерой.
Теперь давайте поговорим о нивелирах.
Нивелир – оптический прибор из геодезической группы, предназначенный для измерений точек высоты на местности или внутри возведённых построек.
Конструкция нивелира во многом схожа с теодолитом, но имеет свои особенности и элементы:
- оптика, включающая зрительную трубу и окуляр;
- зеркальце, закреплённое внутри трубы;
- система уровней для установки;
- подъёмные винты для установки рабочего положения;
- компенсатор для удержания горизонтальной оси.
Нивелир измеряет высоту следующим образом. Сам аппарат устанавливается в точке, называемой обзорной. Из неё должно быть хорошо видно все остальные измеряемые точки. После чего в каждой из них поочерёдно размещают инварную рейку со шкалой. И если все точки имеют разные показания, значит, местность неровная. Высота точки определяется путём вычисления разницы между её положением и положением обзорной точки.
Нивелир тоже имеет несколько разновидностей, но не так много, как теодолит. К ним можно отнести:
- оптические приборы;
- цифровые приборы;
- лазерные приборы.
Цифровые нивелиры обеспечивают наиболее точные результаты, а также простоту применения. Такие приборы оснащаются специальным программным обеспечением, которое позволяет быстро обработать зафиксированные показания. Затем они сохраняются на самом устройстве, благодаря наличию встроенной памяти.
Сегодня в строительстве широко применяется разновидность лазерных нивелиров. Их отличительной чертой является наличие лазерного указателя. Его луч пропускается через специальную призму, которая применяется вместо линзы. В итоге два таких луча образовывают в пространстве перпендикулярные плоскости, пересекающиеся друг с другом. Именно они помогают выровнять поверхность. Поэтому лазерные нивелиры часто применяются для ремонта.
Нивелир – особенности устройства, область применения
Нивелир на стройке – незаменимый прибор. С его помощью можно найти уровень нахождения определенных точек относительно конкретной базы. Перед началом любого строительства проводят планирование участка, что подразумевает устранение неровностей. Проще всего это сделать с использованием нивелира. Без данного прибора не обойтись при выполнении многих других работ – при обустройстве фундамента, заливе полов, установке опалубки.
Область примения нивелира
Конструктивные особенности
Конструкция нивелира
Основным конструктивным элементом нивелира называют зрительную трубу. Она оснащена системой линз, которые способны увеличивать изображение в двадцать и более раз. Данный элемент смонтирован на специальной подставке – трегере. Она имеет три подъемных винта, с помощью которых прибор можно выставлять точно по уровню. Для облегчения данного процесса на подставке присутствует пузырьковый уровень.
В составе зрительной трубы есть маховик. С его помощью можно регулировать резкость изображения. Чтобы подстроить прибор под остроту зрения конкретного человека, применяется регулятор на окуляре.
Дополнительное оснащение и инвентарь
Основные элементы управления нивелира
Чтобы работать с нивелиром, необходимо приобрести не только сам прибор со штативом, но и некоторое дополнительное оснащение. Нужно иметь специальную рейку с нанесенными на ее поверхность делениями и цифрами, что облегчит выполнение соответствующих измерений. Шкала представлена в виде красных и черных полосок, имеющих ширину 1 см.
На планке находятся цифры с шагом в 10 см. Измерительная величина – дециметры, а все цифры написаны в двузначном виде. 60 см обозначается как 06, 120 см – 12 и т. д. Для удобства работы каждые из пяти полосок объединены вертикальной линией. Поэтому вся планка покрыта своеобразными буквами Е – в привычном и зеркальном виде.
Некоторые старые модели нивелиров переворачивают изображение, поэтому на рейке все цифры находятся в таком же непривычном виде. К каждому нивелиру обязательно прилагается паспорт и руководство по применению. В документации к прибору указывается дата последней поверки, что гарантирует его эффективность работы.
В стандартную комплектацию к каждой модели входит и другой инвентарь:
- защитный футляр для хранения зрительной трубы;
- ключ для выполнения обслуживания;
- отвес для установки прибора строго в указанной точке;
- мягкая ткань для обработки линз.
Аксессуары для лазерных нивелирам
Съёмка теодолитом методом створов и перпендикуляров
Метод створов и перпендикуляров хорошо подходит при разбивочных работах. В этом случае мы откладываем на местности прямые углы, последовательно переставляя инструмент на полученные точки на местности. К примеру, от базисной стороны 1-2 мы получаем контрольное направление 1. Сетка нитей в этом случае играет роль шнурки. Измерив, необходимое расстояние, попадаем в стартовую разбивочную точку, а дальше работаем согласно схеме.
Теодолитом можно разбить прямоугольный полигон или проконтролировать соосность разбитого полигона. Теоретическая сумма углов в замкнутом контуре должна быть равна 360°. Устанавливая последовательно инструмент в каждую из точек объекта, измеряем внутренние углы. К примеру, невязка в 1° на 10-метровом отрезке составляет примерно 20 см. Так что можно оценить допуски в зависимости от класса сооружения, и при необходимости внести коррективы в разбивку осей.
Устройство
Конструкция теодолита состоит из базовых частей, которые усложнялись с развитием техники, оснащая его большим количеством функций. Строение инструмента:
- Металлическую треногу с регулируемым штативом и подставкой;
- Центровой отвес и пузырьковый цилиндрический уровень для ровной установки устройства на подставку (трегер);
- Три выравнивающих подъемных винта трегера для горизонтирования прибора;
- Алидаду – верхняя вращающаяся часть прибора, на которой располагаются подвижная зрительная трубка и отсчетный механизм;
- Винты алидады – наводящий и закрепляющий;
- Вертикальный и горизонтальный (лимб) круги, размеченные на угловые градусы;
- Винты горизонтального круга: наводящий и закрепляющий;
- Трубку с наводящим и закрепляющим винтами осуществляющими регулировку резкости изображения, окуляром со стороны смотрящего и объективом, обращенным к объекту наблюдения;
- Окуляр: в него и в объектив устанавливаются линзы, с нанесенной сеткой (коллимационной плоскостью); или датчикилазер (электронная система);
- Кремальеру – винтовой элемент для фокусировки изображения в окуляре;
- Опоры для оси вертикального вращения трубки;
- Отсчетное устройство – оптический микроскоп (со специальным визиром, шкаловой или штриховой линзой и специальным зеркальцем или автономным источником света для считывания показаний).
В современных моделях могут отсутствовать некоторые составные части (например, винты или оптический визир отсчетного устройство), но, при этом, содержать в конструкции дополнительные элементы, например, фото- видеокамеру, лазерную указку, дисплей и клавишную панель настройки. Основные части современного теодолита – алидада, зрительная труба, лимб или горизонтальный круг, подставки, цилиндрический уровень, подъемные винты и вертикальный круг.
Устройство зрительной трубы теодолита:
Горизонтальный круг
Горизонтальный и вертикальный круги теодолита – основные круговые оси прибора, необходимые для замера углового наклона исследуемого объекта. Горизонтальный круг, или лимб представляет собой кольцо из стекла, с нанесенными на него штриховыми угловыми числовыми значениями (градусы, минуты, иногда и секунды).
Шкала представляет собой полный круг от 0-го до 359-го градуса.
Шаг лимба зависит от показателя точности теодолита.
Лимб и алидада
Алидадой называется вся верхняя конструкционная часть теодолита. Она закрепляется на оси непосредственно над лимбом и позволяет конструкции вращаться в горизонтальной плоскости.
Алидада включает в себя колоннообразные опоры: на одной из них располагается вертикальный замерный круг, а в другую вмонтирован микроскоп отсчетного устройства, с помощью которого можно точно определить угол заданный поворотом алидады по окружности лимба. Между опорами располагается подвижный в вертикальной плоскости цилиндр трубки. Алидада и лимб закрываются герметичными кожухами из металла или высокопрочного пластика для предохранения от загрязнения и деформации.
Алидада, трубка и лимб являются ведущими подвижными элементами прибора. Алидада задает отсчет относительно исследуемых точек, после чего для фиксации системы координат кольцо лимба вращается и закрепляется винтами относительно исследуемых точек.
На видео вы можете посмотреть про назначение и устройство теодолита:
Устройство нивелира и теодолита
Чтобы понять отличие между теодолитом и нивелиром, нужно изучить строение и назначение устройств. Оба инструмента применяются в строительстве, но выполняют разные функции.
Что такое теодолит
Теодолит — это геодезическое оптическое устройство, предназначенное для измерения углов. В конструкцию прибора входят:
- корпус и подставка;
- лимб — стеклянный диск со шкалой от 0 до 360°;
- алидада — еще один вращающийся диск на той же самой оси с собственной шкалой;
- оптическая система для наведения на объект, состоящая из линзы, сетки нитей и объектива;
- отсчетный микроскоп;
- регулировочные и закрепительные винты, отвечающие за точность фокусировки прибора;
- встроенные уровни для установки теодолита в правильном положении.
Использование угломера имеет некоторые отличия по сравнению с применением нивелира. Работу с прибором проводят так:
- устанавливают теодолит в верхней точке измеряемого угла, следя за тем, чтобы в ней оказался центр лимба;
- вращают алидаду до совмещения с одной из плоскостей;
- фиксируют показания на шкале;
- перемещают алидаду к плоскости на другой стороне угла;
- повторно фиксируют показания;
- вычисляют разницу между полученными значениями.
Теодолит позволяет измерять и горизонтальные, и вертикальные углы. Внутри категории приборы делятся на несколько разновидностей. В частности, выделяют технические, точные и высокоточные угломеры — отличия между ними заключаются в величине погрешности.
Большинство моделей теодолитов поставляются с комплектным штативом
У некоторых моделей алидада прикреплена к вертикальной оси, у других обладает отличиями и вращается вместе с лимбом. Также существуют угломеры с фото- и видеокамерами, электронным дисплеем и встроенной памятью для хранения предыдущих данных.
Что такое нивелир
Нивелир — это еще один оптический прибор геодезического типа, предназначенный для измерений внутри помещений или на местности. Используют его для вычисления точек высоты, в этом состоит главное отличие от угломера. Конструктивно прибор состоит из следующих частей:
- корпуса, основания и съемного штатива;
- сложной оптики, включающей в себя окуляр и зрительную трубу с зеркальцем внутри;
- системы уровней для настройки прибора при установке;
- винтов для изменения рабочего положения;
- компенсатора, обеспечивающего удержание горизонтальной оси.
При использовании нивелира процесс работы выглядит так:
- прибор устанавливают в обзорном месте, от которого одинаково хорошо видно все измеряемые точки;
- нивелир настраивают по уровням, добиваясь ровного положения инструмента;
- в каждой из измеряемых точек поочередно размещают специальную рейку со шкалой;
- при отличиях в показаниях определяют местность, как неровную;
- вычисляют высоту конкретных точек по разнице между их положением и положением измерительного устройства.
Как и теодолит, нивелир представлен несколькими типами. Существуют простые оптические и более сложные цифровые приборы. Отличие заключается в простоте обращения и удобстве. Первые чаще используют в домашних условиях, вторые применяют в масштабном строительстве, поскольку они способны быстро обрабатывать показания в автоматическом порядке и сохранять в памяти полученные значения.
Поскольку нивелир действует вместе со специальной рейкой, обычно работы с ним проводят с помощником. Один человек выставляет шкалу на точках, а другой управляет прибором и выполняет непосредственные замеры.
Оптическая система и конструкция у нивелира более простые, по сравнению с угломером
16.5. ИЗМЕРЕНИЕ ГОРИЗОНТАЛЬНЫХ УГЛОВ И МАГНИТНЫХ АЗИМУТОВ НАПРАВЛЕНИЙ
Непосредственно перед выполнением измерения теодолит приводится в рабочее положение путём последовательного выполнения трёх операций: центрирования, горизонтирования и установки трубы.Центрирование и горизонтирование теодолита подразумевает установку осей вращения алидады в горизонтальное положение над вершиной измеряемого угла. Установка трубы – операция выставления трубы по глазу и предмету (см. п. 16.4.3). После установки теодолита в рабочее положение приступают к измерению горизонтальных углов. Различают следующие основные способы измерения горизонтальных углов: приемов; совмещения нулей лимба и алидады; повторений.
16.5.1. Способ приемов
Прием состоит из двух полуприемов. Первый полуприем выполняют при положении вертикального круга слева от зрительной трубы. Закрепив лимб и открепив алидаду, наводят зрительную трубу на правую визирную цель (точка А рис. 16.8). После того как наблюдаемый знак попал в поле зрения трубы, зажимают закрепительные винты алидады и зрительной трубы и, действуя наводящими винтами алидады и трубы, наводят центр сетки нитей на изображение знака и берут отсчёт по горизонтальному кругу (отсчет а). Затем, открепив трубу и алидаду, наводят трубу на левую визирную цель (точка В). и берут второй отсчёт (отсчет в). Разность первого и второго отсчётов даёт величину измеряемого угла.
β = а – b
Если первый отсчёт оказался меньше второго, то к нему прибавляют 360º°, тогда:
β = (а + 360°) – b
Второй полуприем выполняют при положении вертикального круга справа, для чего переводят трубу через зенит. Чтобы отсчёты отличались от взятых в первом полуприеме, смещают лимб на несколько градусов. Затем измерения выполняют в той же последовательности, как в первом полуприеме. Если результаты измерения угла в полуприёмах различаются не более двойной точности прибора (то есть 1′ для теодолита Т30), вычисляют среднее, которое и принимают за окончательный результат.
Рис. 16.8. Схема измерения угла способом приемов:а – при размещении нуля лимба вне измеряемого угла; б – при размещении нуля лимба внутри измеряемого угла
Во избежание появления ошибки, связанной с наклоном вех, визирование производят на нижнюю часть вехи или шпильки.
16.5.2. Способ совмещения нулей лимба и алидады
Этот способ используют, когда необходимо быстро оценить значение измеряемого угла. Совместив нули лимба и алидады, осуществляют точную наводку перекрестья нитей зрительной трубы на левую визирную цель (точка В). Закрепив лимб и открепив алидаду, визируют трубу на правую визирную цель (точка А). Отсчет по горизонтальному кругу непосредственно выразит значение измеряемого справа по ходу лежащего угла. Данный способ часто используют для быстрого контроля измерений.
16.5.3. Способ повторений
Рис. 16.9. Схема измерения угла способом повторений.
Каждый раз в ходе измерений фиксируют переход через нулевой штрих лимба добавлением к конечному отсчету 360°. Тогда искомое значение измеряемого угла определится:
,
где k – число переходов через нулевой штрих лимба.
В отдельных случаях такие измерения производят при двух кругах теодолита (KЛ и КП), принимая за окончательное среднее значение угла из двух, полученных в результате измерений.
16.5.4. Измерение магнитных азимутов направлений теодолитного хода
Магнитные азимуты в теодолитном ходе измеряют для ориентирования теодолитного хода по магнитному меридиану. Чтобы привязать стороны теодолитного хода к осевому меридиану зоны (вертикальной линии координатной сетки) магнитные азимуты пересчитывают в дирекционные углы (см
тему 6)
Обратите внимание на то, что сам теодолит не предназначен для измерения ориентирных углов, но если к нему прикрепить ориентир-буссоль (рис. 16.10), то можно определить магнитный азимут заданного направления
Рис
16.10. Ориентир-буссоль
Рис. 16.10. Ориентир-буссоль
Для определения магнитного азимута ориентир-буссоль устанавливают в специальный паз, имеющийся на вертикальном круге теодолита, и закрепляют ее винтом (рис. 16.11). Положение магнитной стрелки наблюдают в зеркале, которому придают нужный наклон. Магнитная стрелка показывает направление магнитного меридиана, от которого отсчитывают магнитный азимут или румб заданного направления.
Рис. 16.11. Теодолит с прикрепленной ориентир-буссолью