Плазменные сварочные аппараты

Описание и сфера применения плазменной сварки

Главное отличие этого способа соединения деталей — высокая температура нагрева (до 8000 °С). Сварочная ванна защищается средой аргона. Система охлаждения препятствует критическому повышению температуры.

Без этого блока происходит расплавление плазмотрона, рабочая зона нагревается до 30000 °С.

Ток, являющийся плазмогенератором, меняет физические свойства электропроводного газа.

Плазменная сварка используется для соединения заготовок из материалов, имеющих высокую температуру плавления. Чаще всего агрегаты такого типа применяют на производственных площадках. Реже встречаются модели для работы в домашних мастерских.

Переделка из инверторного аппарата

Правильно собрать плазморез из сварочного инвертора своими руками можно, тщательно изучив принципы изготовления, купив все нужные детали.

Чертеж плазмореза на основе инвертора

Самодельные устройства рекомендуется собирать по типовым схемам, например на основе аппарата АПР-91. Необходимо четко придерживаться готовых чертежей. Это поможет правильно установить все конструктивные элементы, сделать работоспособное устройство.

Схема и изготовление осциллятора

Блок используется для генерации высокочастотных токов. Он функционирует в импульсном или непрерывном режиме. Осциллятор помогает быстро подготовить резак к работе.

Электрическая схема этого узла включает в себя:

  • преобразователь (выпрямитель);
  • ряд конденсаторов;
  • блок питания;
  • управляющие элементы;
  • импульсный модуль;
  • датчик напряжения.

Необходимые детали и возможность их самостоятельного изготовления

Для изготовления плазмореза требуется мощный источник питания. Лучший вариант — сварочный инвертор, выдающий стабильное напряжение.

Также потребуются следующие компоненты:

  1. Блок питания. Для формирования этого узла используют сварочный инвертор, работающий с постоянным током. Переделывать его не нужно: устройство обладает всеми необходимыми для работы параметрами.
  2. Плазмотрон. Этот компонент рекомендуется покупать в готовом виде, создавать его самостоятельно сложно.
  3. Осциллятор. Устройство паяют по простой схеме. Однако людям, не разбирающимся в электротехнике, рекомендуется приобретать модуль в готовом виде.
  4. Компрессор. Для самодельного агрегата подойдет любая деталь, например от краскопульта.
  5. Кабель-шланг. Этот элемент можно сконструировать из кислородного шланга и стандартного провода. Однако желательно приобрести готовый набор, включающий все необходимые компоненты.
  6. Кабель массы. Снабжается зажимом для фиксации на разрезаемой детали.

Процесс сборки плазмореза

Для подготовки оборудования к использованию плазмотрон соединяют с компрессором и инвертором.

Для этого потребуются кабель-пакеты, с которыми работают так:

  1. Провод подачи электрического тока применяют для соединения электрода с инверторным сварочным аппаратом.
  2. Воздушный шланг подключают к плазменной горелке и компрессору. В результате из воздушного потока должна образовываться струя плазмы.

О дальнейшей эксплуатации

Разрезаемый металл расплавляется только в точках воздействия, поэтому важно следить за перемещением потока. При смещении воздушно-плазменной струи качество работы ухудшается

Для соблюдения важного требования применяют тангенциальный способ подачи газа в камеру сопла.

Во время резки контролируют следующие показатели:

  1. Скорость движения воздуха. Она не должна резко повышаться. Качественный срез получается, если параметр составляет 800 м/с.
  2. Силу тока, подаваемого инвертором. Она должна составлять не более 250 А.

Оборудование и компоненты

Изготовить микроплазменный сварочный аппарат проще всего на основе уже имеющегося инверторного сварочного аппарата. Для выполнения такой модернизации вам понадобятся следующие компоненты:

  • любой инверторный сварочный аппарат для TIG сварки со встроенным осциллятором или без него;
  • сопло с вольфрамовым электродом от TIG-сварочника;
  • аргоновый баллон с редуктором;
  • небольшой кусочек прутка из тантала или молибдена диаметром и длиной до 20 мм;
  • фторопластовая трубка;
  • медные трубки;
  • небольшие кусочки листовой меди толщиной 1-2 мм;
  • электронный балласт;
  • резиновые шланги;
  • гермоввод;
  • хомуты;
  • проводка;
  • клеммы;
  • автомобильный бачок стеклоочистителя с электронасосом;
  • выпрямительный блок питания электронасоса стеклоочистителя.

Устройство плазменного сварочного аппарата.

Работы по доводке и изготовлению новых деталей и узлов потребуют использования следующего оборудования:

  • токарный станок;
  • электропаяльник;
  • горелка для пайки с баллоном;
  • отвертки;
  • нож;
  • пассатижи;
  • амперметр;
  • вольтметр.

Направляющие и управление

Плазморез с ЧПУ своими руками практически ничем не отличается от заводского по возможностям. Режущая головка должна иметь возможность двигаться по трем осям. Мобильную раму можно без особого напряжения сделать своими руками. Купить придется только шаговые двигатели и экранированные кабели. Защита кабеля необходима — сигнал от ЧПУ очень чувствительный и помехи даже от инвертора могут повлиять на работу системы. Если станок работает от трансформатора, то защита кабелей необходима вдвойне. Программный блок тоже подвержен влиянию посторонних электрических полей, установить его лучше всего в заземленном металлическом ящике. Схема простая, но очень действенная.

Ходовые винты, концевики и прочие принадлежности тоже придется покупать. В качестве концевых выключателей можно использовать автомобильные датчики Холла. Они на порядок дешевле стандартных промышленных, хотя по надежности и действенности находятся на одном и том же уровне.

Сложность схемы и настройки управления делает уместным покупку готовой системы. Адаптировать ее под готовый рабочий стол и плазморез достаточно сложно, лучше поступить наоборот — сначала приобрести систему управления, а затем разрабатывать и реализовать исполняющие механизмы. Это будет оправданным в любом случае.

Как изготовить сварочный трансформатор

Источником питания плазмы является сварочный трансформатор. Как и некоторые другие элементы его можно изготовить самостоятельно.

Необходимые параметры

Трансформатор для плазменной резки отличается от обычного сварочника напряжением холостого хода и составляет 220-250В. Это необходимо для создания и поддержания дуги между электродом и разрезаемой деталью. Мощность и ток вторичной обмотки зависят от предполагаемой толщины металла:

  • 20А, 2,5кВт – 6 мм;
  • 50А, 6кВт – 12 мм;
  • 80А, 10кВт – 18-25 мм.

Источник питания необходим с “мягкой” характеристикой, напряжение при работе составляет 70В. Для работы вспомогательной дуги достаточен ток 5А. Он ограничивается сопротивлением 30-50Ом, изготовленным из толстой нихромовой проволоки.

https://youtube.com/watch?v=Gp3jWi_4MP4

Как рассчитать

Расчет питающего трансформатора сводится к определению необходимых сечений магнитопровода, первичной и вторичной обмотки и числа витков.

Для аппарата, предназначенного для разрезания металла до 12 мм при токе 50А, напряжении холостого хода 200В и напряжении сети 220В эти параметры составляют:

  • сечение магнитопровода – 107 мм²
  • первичная обмотка – 225 витков медным проводом Ø4,7 мм;
  • вторичная обмотка – 205 витков медной проводом Ø5,04 мм².

Изготовление трансформатора

В связи с тем, что трансформатор должен иметь “мягкую” характеристику, катушки располагаются отдельно друг от друга. При использовании О-образного сердечника они находятся на разных стержнях, на Ш-образном магнитопроводе обмотки располагаются вдоль средней части.

Намотка катушек производится по расчетным параметрам на каркасах их электротехнического картона. Готовые обмотки обматываются стеклолентой или киперной лентой и покрываются краской.

После намотки обмоток и сборки магнитопровода на трансформатор крепится и подключается диодный мост из 4 диодов с радиаторами, собранный на текстолитовой площадке. Собранный трансформатор помещается в корпус, а вывода обмоток и диодного моста подключаются к клеммам на передней панели. Подключение выполняется согласно принципиальной схеме, учитывая наличие амперметров, вольтметров, пускателей и других деталей.

Осциллятор, подключенный последовательно со сварочником, имеет высокое выходное напряжение высокой частоты. Поэтому диоды в выпрямителе необходимо использовать высокочастотные или установить отдельный диодный мост, специально для вспомогательной дуги.

Как сделать плазморез

Как вы заметили, заголовок нашей статьи звучит так: «Как сделать плазморез из сварочного инвертора». Это один из самых частых запросов по данной теме. Но спешим вас огорчить: собирать плазморез из инвертора своими руками — это не самая лучшая идея. Точнее так: использовать инвертор в качестве источника тока в самодельном плазморезе — это неэффективное и дорогое занятие. И вот почему.

Стандартный инвертор работает от сети 220В. Для резки очень тонкого металла этого может быть достаточно, но для выполнения более сложных работ вам понадобится источник, работающий от 380В. Для этих целей годится трансформатор. Кроме того, в плазморезе поджиг дуги контактный, а его невозможно сделать дома при использовании инвертора в качестве «донора».

Также учитывайте, что нельзя взять просто самый дешевый инвертор и сделать из него плазморез. Вам понадобится достаточно мощный и качественный аппарат, стоимостью минимум 150-200$. Что уже составляет половину или более от цены заводского плазмореза. Дополнительно вам понадобится плазмотрон и клапан. В итоге общая стоимость такой самоделки составит те самые 300$, которые просят за новый плазморез в магазине.

Ну а если вы просто хотите сделать недорогой плазморез, то целесообразнее изготовить плазменный резак из обычного трансформатора. Трансформатор — это самый простой источник тока. В нем нет никаких электронных компонентов, поэтому он наиболее надежен. Самодельный плазморез из трансформатора будет работать даже при перепадах напряжения. А благодаря большой мощности от сможет резать толстый металл. Единственный недостаток — это большие габариты и вес такого плазмореза. К тому же, он будет потреблять немало электроэнергии.

Ниже видео о том, как смастерить плазморез из сварочного трансформатора своими руками.

Мы не рекомендуем собираться своими руками плазмотрон (он же резак). Это невыгодно и сложно. Себестоимость самодельного резака будет близка к себестоимости магазинного. Так что лучше соберите «начинку» плазмореза, а все комплектующие докупите.

Применяемые электроды

Электроды занимают значимое место в сборке инверторного плазмореза. В плазмотрон нужно подобрать специальный электрод из соответствующего материала. В этих целях применяют детали из следующих тугоплавких веществ:

  • Бериллий.
  • Цирконий.
  • Торий.
  • Гафний.

Эти электроды отличаются способностью создания тугоплавкой пленки оксида во время нагрева, что защищает инструменты от повреждений и повышает уровень предохранения. Если выбирать между этими материалами, то для сварки в бытовых условиях оптимально остановиться на гафниевых и циркониевых электродах, потому что два других элемента вырабатывают токсичные испарения.

Структурная схема сварочного аппарата

Для производства сварочных работ используются устройства, работающие на переменном и постоянном токе.

Схема любого аппарата включает в себя трансформатор (возможно использование трансформатора из микроволновки), выпрямитель, дроссель, держак, электрод. Именно в такой последовательности происходит протекание электрического тока по замкнутой цепи.

Цепь замыкается, когда между электродом и металлическими заготовками, которые нужно соединить, возникает электрическая дуга.

Чтобы качество сварного соединения было высоким, необходимо обеспечить устойчивое горение этой дуги.

Аппараты постоянного тока применяют для сварки элементов из тонколистового металла. При этом способе сварки можно использовать любые электроды и электродную проволоку без керамической обмазки.

Держак электрода присоединяется к выпрямителю через дроссель. Это делается для того, чтобы сглаживать пульсации напряжения.

Дроссель представляет собой катушку медных проводов, которая намотана на любом сердечнике. Выпрямитель, в свою очередь, соединяется с вторичной обмоткой трансформатора.

Трансформатор включается в бытовую электросеть. Последовательность соединения проста и наглядна.

Преобразование напряжения переменного тока выполняется с помощью понижающего трансформатора.

Согласно закону Ома напряжение, которое индуцируется на вторичной обмотке трансформатора, уменьшается, а величина тока увеличивается с 4-х ампер до 40 и более.

И с помощью проводов присоединить к нему держак электрода. Но использовать держак в практических целях невозможно, поскольку схема не содержит других необходимых элементов.

И главное – в ней отсутствует регулятор величины тока. А так же выпрямитель и другие элементы.

Трансформатор считается основным элементом сварочного аппарата. Его можно купить или приспособить уже бывший в эксплуатации.

Многие мастера используют трансформатор от микроволновки, отработавшей свой срок. По своим габаритам и весу микроимпульсный элемент всегда занимает много места в конструкции.

Если рассмотреть сварочный агрегат в целом, то можно выделить три основных блока, которые она в себя включает:

  • блок питания;
  • блок выпрямителя;
  • блок инвертора.

Самодельный инверторный аппарат можно скомпоновать таким образом, чтобы он имел минимальные габариты и вес.

Такие устройства, рассчитанные на применение в домашнем хозяйстве, сегодня продаются в магазинах.

Преимущества инверторного аппарата перед традиционными агрегатами очевидны. В первую очередь, следует отметить компактность аппарата, удобство в эксплуатации, надежность.

Самые общие расчеты подтверждают, что сделать такой аппарат своими руками проще и выгоднее.

Основные элементы, практически, всегда можно найти среди электротехнических машин и приборов, которые оказались в запасниках. Или на свалке.

Простейший регулятор тока можно сделать из куска нагревательной спирали, которая используется в бытовых электрических плитах. Дроссель – из отрезка медной проволоки.

Видео:

Радиолюбители придумали самый простой по схеме импульсный способ сварки. Он используется для крепления проводов к металлической плате.

Никаких сложных приспособлений – только дроссель и пара проводов. Регулятор силы тока тоже не нужен. Вместо него в цепь включается плавкая вставка.

В качестве второго — используется зажим типа «крокодил». Вилка с проводами включается в розетку бытовой сети.

Зажим с проводом резко прикладывается к плате в том месте, где его нужно приварить. Возникает сварочная дуга и в этот момент могут перегореть предохранители, которые находятся в электрическом щите.

Этого не происходит, потому что быстрее сгорает плавкая вставка. А провод остается надежно приваренным к плате.

Сборка плазмотрона своими руками

Чтобы сконструировать плазморез из инвертора, понадобится приобрести все сопутствующие детали и подготовить инструменты. Основными комплектующими являются:

  • компрессор;
  • плазмотрон;
  • электроды;
  • сопло;
  • завихритель потоков;
  • изолятор;
  • кнопка спуска;
  • рукоятка с отверстиями для кабелей;
  • кабель-шланг;
  • дистанционная пружина для обеспечения одинакового промежутка между соплом и металлом.

Для начала к сварочному инвертору нужно присоединить шланг, являющийся проводником воздуха от компрессора. Кабель массы и шланг-пакет монтируются с лицевой стороны, и к шланг-пакету присоединяется плазмотрон. Сопло горелки надо присоединить прижимной гайкой. За плазморезом находится электрод и изоляционная втулка, препятствующая возникновению дуги на нежелательном участке.

Завихритель потока направляет его к цели, а вся конструкция укладывается в корпус из металла или фторопласта. После сборки сварочного плазмореза нужно проверить агрегат на работоспособность. При включенном состоянии инвертор подает высокочастотный ток на плазмотрон.

Плазмотрон своими руками — схема

Многожильный провод

Как сделать многожильный провод подходящего сечения для сварочного аппарата? Есть такой способ. На расстоянии 30 метров (больше или меньше, в зависимости от расчетов) надежно крепятся два крюка. Между ними натягивается нужное количество тонкого провода, из которого будет составлен многожильный проводник. Потом один конец снимается с крюка и вставляется в электродрель.

На малых оборотах пучок проводов равномерно закручивается, его общая длина будет несколько уменьшаться. Концы провода зачистить (отдельно каждую жилу), залудить и хорошенько пропаять. Затем изолировать весь провод, желательно изоляционным материалом на текстильной основе.

Используемое оборудование

Установки для плазменной сварки широко применяются не только на крупном производстве, но и в бытовых условиях. При этом стоит отметить, что спрос на данном оборудовании постоянно растет, что лишний раз подтверждает его востребованность.

Устройство оборудования для сварки.

Все оборудование, предназначенное для выполнения данной работы, можно разделить по следующим особенностям:

  • тип воздействия;
  • способ стабилизации дуги;
  • сила тока.

По своим возможностям плазменная дуга уступает пальму первенства только лишь нескольким технологиям, основанным на лазерном и электронном лучах. В сравнении с другими методами, плазменный отличается более высокой эффективностью и производительностью.

При этом стоит отметить, что не стоит забывать и о других технологиях. Так, для сваривания деталей в серьезных отраслях, например, в авиастроении и аэрокосмической сферах, широко используется аргонодуговая сварка.

Плазменная, в свою очередь, чаще всего применяется для резки металлов, так как она позволяет осуществлять данный процесс с высокой скоростью.

Особенно она становится незаменимой при обработке сплавов с минимальным последующим короблением и развитием напряжений, а также деформаций.

Как сделать плазморез?

Сборка этого устройства всегда должна начинаться с источника питания. В промышленных агрегатах используют трансформатор, чтобы добиться большей мощности, а, значит, и разрезать более толстый металл. Для ручного домашнего резака отлично подойдет обычный инвертор, который способен обеспечить такие показатели, как устойчивое напряжение и высокую частоту. Преимуществом использования именно инвертора станет и его легкий вес, который сделает аппарат более удобным для перевозки, а также он вполне способен обеспечить стабильное горение дуги резака и качество самой резки.

Кроме этого, инвертор должен соответствовать еще нескольким требованиям:

  • Его питание должно осуществляться от сети в 220В.
  • Работа резака должна проходить с мощностью в 4 кВт.
  • Диапазон регулировки тока для ручного устройства должен быть от 20 до 40 А.
  • Холостой ход также 220В.
  • Номинальный режим работы при цикле в 10 минут не должен превышать 60%.

Для того чтобы достичь всех указанных параметров, необходимо использовать определенное дополнительное оборудование.

Сварка косвенного действия

В этом случае дуга образуется между наконечником плазмотрона и электродом, газ выдавливает ее из сопла, в результате чего на выходе получается мощная струя плазмы.

Температура струи в данном случае намного ниже, чем при прямом воздействии. По этой причине косвенное воздействие часто применяют для соединения и резки деталей из материалов с низкой электропроводностью.

Давление газа контролирует силу выхода струи плазмы. Благодаря этому метод косвенного воздействия используется для напыления металла, прогрева заготовок.

От выбора режима работы зависит качество места соединения. При подборе режима необходимо учитывать тип подачи тока, какой материал подлежит сваривать, а главное — диаметр рабочей струи.

Самостоятельное изготовление насадок

К сменным насадкам относятся сопло и электрод.

При их изготовлении учитывают следующие моменты:

  1. Для плазменной сварки и резки подойдут электроды из тугоплавких металлов. При нагревании на их поверхностях образуются жаропрочные оксидные пленки. Однако при выборе металла учитывают, что некоторые вещества выделяют токсичные пары или образуют радиоактивные соединения. Гафний — оптимальный вариант для изготовления электрода к самодельному резаку.
  2. От параметров сопла зависят качество среза и скорость работы. Делать деталь слишком длинной нельзя: она быстро износится. Рекомендованный диаметр сопла — 3 мм.

Выбор плазменного сварочного аппарата

По большому счету плазменный сварочный аппарат состоит из двух основных модулей – это источник электропитания с интегрированным инвертором и сварочная горелка, а все остальное можно назвать дополнениями. При помощи такого агрегата можно варить, резать или даже паять самые разные металлы, невзирая на их повышенную толщину, так как плазменный поток разогревает материал гораздо лучше, нежели обычная газовая или электрическая сварка.

История развития плазменной сварки

Сварка «Горыныч» является генератором электродуговой низкотемпературной плазмы, получаемой посредством разогрева паров рабочей жидкости к состоянию ионизации Источник plazmen.ru

Плазменную сварку можно отнести к разряду новых технологий, хотя ее стали применять еще в прошлом столетии, но давайте сделаем короткий экскурс в историю. В конце 50-х годов XX века инженеры-конструкторы американской компании Union Carbide Corp сделали первый аппарат плазменной резки, хотя при этом питались идеями физика из Соединенных Штатов И. Ленгмура. Несмотря на то, что данный метод начали применять 70 лет назад, его можно назвать всего лишь прообразом современной технологии. Все методы защиты сварочной ванны с применением инертных газов, а также разработку портативных аппаратов придумали в период с 1963 по 2006 годы.

Резаки предназначены для комплектации аппаратов ручной плазменной резки – плазморезов с контактным и бесконтактным способом зажигания дуги, имеющих разъемы ЭА и ZA Источник prompostavka.in.ua

Безусловно, плазменная резка, которая увидела свет в 1963 году, значительно увеличила скорость производства, но при этом была одна существенная проблема – на металлическую поверхность сильно воздействовало окисление. В 1965 году начали впрыскивать воду, и это снизило процент окалины, но инженеры-конструкторы на этом не собирались останавливаться. В результате исследований в 1987 году появляется резак с контактным пуском, а в 1990 с плазмой начали работать под водой на глубине до 5 (пяти!) метров. В 1999 мир услышал о создании коаксиальной технологии (газ поступает по общей оси), а в 2006 году начали использовать портативные полуавтоматы.

Популярность и назначение плазменной сварки

На сегодняшний день плазменные агрегаты претендуют на завоевание основной ниши на рынке сварочных аппаратов, причем популярность таких моделей стала расти и не только в промышленном секторе, но и среди бытовых потребителей. Если быть более точным, то можно обратиться к цифрам: сейчас 65% работ, которые раньше выполнялись при помощи электросварки, отошли в сферу деятельности плазмы, то есть, уже больше половины и это явный и стремительный прогресс.

а) плазменная дуга; б) плазменная струя; 1) подача газа; 2) дуга; 3) струя плазмы); 4) обрабатываемый металл; 5) наконечник; 6) катод; 7) изолятор; 8) катодный узелИсточник born-shop.ru

При помощи плазменного оборудования монтируют трубопроводы разного назначения, ее используют в машино- и самолетостроении, строительстве, ремонте различных механизмов, но это лишь часть всей сферы применения. Кроме того, способность плазмотрона обрабатывать неметаллы может заменять гидроизоляцию, например, оплавление стыков железобетонных блоков, плит и перекрытий.

Такой метод имеет ряд неоспоримых преимуществ:

  • высокая температура плазмы при резке и сваривании материалов:
  • повышенный уровень КПД;
  • низкий расход инертных газов;
  • малая площадь прогрева, что практически исключает деформацию и существенно понижает усадку шва;
  • применение технологии не только для металлов, но также для неметаллов;
  • отпадает потребность в периодическом приобретении баллонов с газом или их заправке;
  • агрегат легко перемещать с место на место;
  • повышенный диапазон по толщине металлических заготовок для обработки;
  • улучшенная система безопасности;
  • доступная стоимость.

Устройство резака

Так как температура дуги искусственно повышается при помощи подачи горячего воздуха, то ее температура в самодельном плазморезе может достигать 8 000 градусов. Это очень высокий температурный показатель, который позволяет производить точечную резку металла, не нагревая при этом другие части листа. Как и любые другие технические приборы, плазморезы из инвертора своими руками будут отличаться между собой по своей мощности, которая будет определять, насколько толстый лист стали сможет разрезать аппарат. Ручные резаки чаще всего могут осилить лист до 10 мм толщиной. Промышленные агрегаты способны справиться с металлом толщиной в 100 мм. Самодельный плазморез, изготовленный своими силами сможет разрезать листы с толщиной до 12 мм.

Такие изделия можно использовать для того, чтобы заниматься фигурной резкой, а также сваривать легированные стали с присадочной проволокой. Простейшие резаки включают в себя четыре основных детали – источник питания, плазмотрон, компрессор, масса.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий