Радиус кривошипа: определение и расчет

Устройство КШМ

Схема обычного кривошипа предоставлена комбинированием самых разных компонентов, которые и предоставляют передачу с перенаправлением вращения. Они такие:

  1. Шатун.
  2. Цилиндр-поршневая группа.
  3. Коленчатый вал.

Все данные детали размещены в двигателе в блоке цилиндров. Полезная КПД находится в большом диапазоне, может быть довольно большим

Анализируя чертеж необходимо уделять свое внимание тому, что все детали должны точно позиционироваться по отношению друг к другу

Центральным элементом механизма очень часто становится поршень. Связывают это с тем, что в период движения поршня создается нужное давление. Характерностями назовем такие моменты:

  1. Точность размеров очень высокая. В другом случае ДВС потеряет мощность или заклинит при эксплуатировании.
  2. Во время изготовления используются легкие сплавы, благодаря чему увеличивается КПД.
  3. Материал должен держать влияние внешней среды.
  4. Радиус отвечает блоку цилиндров.

Для обеспечения необходимой степени герметизации на данной детали делают несколько проточек, назначение которых состоит в расположении герметизирующих колец.

Дополнительным центральным элементом можно назвать шатун. Его назначение состоит в связи поршня и коленчатого вала. Благодаря этому обеспечивается передача механического действия. Основными характерностями назовем следующее:

  1. Шатун сделан в виде двутаврового изделия.
  2. Шатун отличается очень высокой стойкостью к изгибу.
  3. На концах, в основном, размещены головки для сцепления с поршнем и коленчатом валом.
  4. Радиус варьирует в огромном диапазоне.

В месте непосредственного контакта шатуна с коленчатым валом находится шатунная шейка. Часть снизу сделана в разъемном виде, благодаря чему можно провести демонтаж.

Коленчатый вал

Ставится вал кривошипа в механизме для второго этапа изменения энергии. За счет данного компонента имеется возможность провести превращение поступательного движения поршня в возвратно-поступательное. Цена такого изделия очень большая, так как он обладает сложной геометрией. Радиус кривошипа также зависит от самых разных факторов. Характерности вала такие:

  1. Существует два типа шеек: шатунные и коренные. Их назначение сильно разнится, как и форма. Соединение проходит особенным типом шеек.
  2. Фиксация проходит с помощью специализированных крышек. Даже малейшее смещение будет причиной серьезного износа.
  3. Для уменьшения степени трения ставятся подшипники. Выделяют очень большое количество различны вариантов выполнения подшипников, выбор проходит в зависимости от условий эксплуатации.
  4. Шатунные шейки предназначаются для крепежа шатуна. Они имеют сравнительно малые размеры, повторяют форму шатуна.
  5. Диаметр может варьировать в огромном диапазоне.

Во время изготовления данного компонента применяется сталь, отличающаяся большой стойкостью к нагреву и механическому действию.

У мотора также есть маховик, являющийся важным конструктивным элементом. Сред свойств отметим:

Уделяют внимание правильности фиксации. Он не должен прокручиваться, так как это будет причиной повреждения вала

Во время изготовления применяется сталь с очень высокой стойкостью к большой температуре. Обладает большим весом и размерами, при раскручивании обеспечиваются самые лучшие условия вращения коленчатого вала. За счёт внушительного веса появляются большие проблемы при старте мотора, так как для его раскручивания требуется высокое усилие. Увеличенный радиус также плохо отражается на массе изделия.. Маховик обязан иметь правильные размеры, так как даже небольшие отклонения приводят к большим последствиям

Он ставится для исполнения самых многообразных функций

Маховик обязан иметь правильные размеры, так как даже небольшие отклонения приводят к большим последствиям. Он ставится для исполнения самых многообразных функций.

Блок и головка блока цилиндров

Все детали размещены в герметичном корпусе, который именуется блоком. Его габариты отличаются большой точностью, есть охлаждающий пояс. Для конструктивного облегчения и хорошего отвода тепла применяется алюминий.

Головка блока цилиндров накрывает весомую часть. Она дает возможность проводить обслуживание если понадобится. При ее изготовлении также используется металл с маленьким весом. Сверху присутствуют отверстия для подсоединения иных узлов, а еще отвода продуктов згорания.

Это интересно: Производственный травматизм — причины, классификация, профилактика

Шинный калькулятор

Этот расчет шинных размеров является теоретическим. Без крайней нужды не стоит ставить на автомобиль шины, которые не рекомендует производитель.

Перед тем как установить покрышки, необходимо:

  • убедиться в том, что изменения не приведут к появлению проблем (механика, кузов, габариты и т.д.);
  • проследить за тем, что устанавливаемые покрышки соответствуют существующим правилам и не нарушают их;
  • удостовериться в соответствии ширины обода и его диаметра характеристикам шины.

Также нужно помнить, что изменение размеров покрышек часто изменяет и такой важный показатель, как индекс нагрузки .

Расчеты механизмов

1 Расчеты рычажных механизмов

В результате проведения расчетов рычажного механизма необходимо определить размеры и взаимное расположение его звеньев, их кинематические параметры (скорость, ускорение), крутящий момент, приведенный к ведущему звену (кривошипному валу) обеспечивающий его работу в требуемом режиме и геометрические размеры его звеньев, позволяющие передавать возникающие при работе механизма усилия.

Методика выполнения кинематических и силовых расчетов рычажного механизма зависит от его типа, а прочностной расчет геометрических размеров входящих в него звеньев – от их конструктивного исполнения и направления сил и моментов, действующих на них. В общем, случае расчет рычажного механизма выполняется в следующей последовательности:

  • расчет размеров (длин), определение исходного и конечного положения звеньев механизма, а также величину перемещения и траекторию движения его выходного звена,
  • расчет скоростей и ускорений, возникающих в звеньях механизма,
  • расчет усилий, в том числе инерционных, действующих на звенья механизма и потребного крутящего момента приведенного к ведущему звену,
  • прочностной расчет звеньев механизма, (коленвал, шатун, ползун, шарниры),
  • прочие расчеты, определяемые спецификой конструкции и работы механизма.

Уравновешивание масс в одноцилиндровом двигателе

Компонент вращающейся массы в одноци­линдровом двигателе может быть полностью уравновешен при помощи соответствующего противовеса. Противовесы обычно преду­сматриваются на обеих сторонах, и массы должны быть сбалансированы относительно радиуса вращения центра масс. Колебания сил можно представить в виде векторов силы (рис. «Полностью уравновешенные массы 1-го и 2-го порядков» ), когда они моделируются как вращающиеся в противоположных направле­ниях, и имеющие в каждом случае половин­ную величину.

Следовательно, для уравновешивания коле­бательных сил инерции могут быть использо­ваны два вращающихся в противоположном направлении вала. Горизонтальная составля­ющая исчезает и, как минимум составляющая колебательной силы инерции первого порядка может быть скомпенсирована.

Для практически полного уравновешивания масс требуются дополнительные уравновешивающие валы, которые должны вращаться со скоростью в два раза выше частоты вращения двигателя, чтобы полностью уравновесить со­ставляющую колебаний второго порядка.

Часто конструкторам приходится идти на ком­промисс вследствие того, что системы с противо­положно вращающимися валами являются до­рогостоящими, и уже для уравновешивания сил инерции первого порядка требуются значитель­ные массы. Например, масса противовеса может быть равна половине колеблющейся массы. При этом неуравновешенные силы инерции, дей­ствующие наружу в направлении продольной оси цилиндра, уменьшаются наполовину, однако за счет больших масс, вращающихся компонен­тов возникают поперечные силы (см. табл. «Уравновешивание масс в одноцилиндровом двигателе, в зависимости от степени уравновешивания» ). Такая частичная компенсация называется 50% — ной балансировкой. Обычными цифрами явля­ются 100% уравновешивание вращающихся масс и 50% уравновешивание колеблющихся масс.

Методы формовки ПНД труб

Чтобы согнуть типовые ПНД трубы в бытовой обстановке – следует воспользоваться проверенными методиками, успешно применяемыми народными умельцами. Среди известных подходов к этому процессу выделяются следующие приемы:

  • Применение паяльного или строительного фена.
  • Заполнение полости трубы горячей водой (кипятком).
  • Засыпка в нее разогретого до 80-90 градусов сыпучего состава (соли или речного песка).

Сгибать пластиковую трубу в домашних условиях допускается и другими способами (газовой горелкой, например).

Но этот способ выпрямления трубопровода реализуем лишь в очень жаркую погоду (при температуре воздуха не ниже 30-ти градусов).

При большом объеме трубных заготовок и необходимости сгибать их с высокой точностью потребуется специальное формовочное оборудование. Оно востребовано в условиях промышленного производства и в быту используется крайне редко.

Маятник Капицы

Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.

Петр Леонидович Капица

Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.

Владимир Игоревич Арнольд

Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:

«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий  вертикально маятник на базе швейной машинки».

Демонстрация динамической стабилизации перевернутого маятника с помощью электробритвы

У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.

Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.

А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.

Видео:

  1. GetAClass. Маятник Капицы 
  2. Маятник Капицы: диалог академика Арнольда и Капицы, вывод формулы

Устройство автомобиля

Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:

  • кривошипно-шатунный механизм (КШМ);
  • газораспределительный механизм (ГРМ);
  • система охлаждения;
  • смазочная система;
  • система питания;
  • система зажигания (в карбюраторном двигателе);
  • система электрического пуска двигателя.

В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.

Рис. 1. Схема четырехтактного одноцилиндрового карбюраторного двигателя: 1 — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 — свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11 — шатун; 12 — коленчатый вал; 13 — поддон

При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения.

Основные параметры двигателей

Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2).

Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.

Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).

Рис. 2. Основные положения кривошипно-шатунного механизма: а — ВМТ; б — НМТ; Vc — объем камеры сгорания; Vh — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня

Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя.

Такт — часть рабочего цикла, происходящая за один ход поршня.

Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ.

Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.

Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания.

Степень сжатия ε — отношение полного объема цилиндра к объему камеры сгорания.

Индикаторная мощность Ni, мощность, развиваемая газами в цилиндре.

Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Ni, так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь Nм.

Механический КПД (коэффициент полезного действия) двигателя ηм — отношение эффективной мощности к индикаторной:

Индикаторный КПД ηi, представляет собой отношение теплоты Qi эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом.

Эффективный КПД ηе — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q1, подведенному в процессе работы.

Среднее эффективное давление ре — произведение среднего индикаторного давления рi (давление, действующее на поршень в течение одного хода поршня) на механический КПД ηм.

Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт.

Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности.

6.4 Определение ускорения поршня

Уравнение ускорения поршня может быть получено дифференцированием уравнения скорости по t.

При   

Вывод:

а) При φ=180°; и λ<0,25 кривая  ускорения выпуклая и ускорение имеет одно наименьшее значение

б) При λ>0,25 в точке  кривая ускорения имеет вогнутость в сторону оси и ускорение дважды достигает наименьшего значения

Построение кривой ускорения поршня произведено:

а) аналитически. При этом значение множителя Aj в скобках справочная величина в зависимости от λ и φ.

б) графически. Путем сложения ускорения первого jП I=ω2Rcosφ и второго jП II=ω2Rλcos2φ

Для дезаксиального механизма jП

Угол конуса

Важным критерием при построении самых разных чертежей считается угол конуса. Его можно определить соотношение крупного диаметра к меньшему. Высчитывается данный показатель по следующим причинам:

  1. На момент обработки специалист должен иметь в виду данный показатель, так как он дает возможность получить нужное изделие очень точно размеров. Во многих случаях обработка проходит собственно при учете угла, а не критериев большого и небольшого диаметра.
  2. Угол конуса рассчитывается на момент проектной разработки. Данный показатель наноситься на чертеж или отображается в специализированной таблице, которая имеет всю интересующую информацию. Оператор станка или специалист не проводит расчеты на месте производства, любая информация должна быть указана в разработанной технологичной карте.
  3. Проверка качества изделия очень часто проходит по малому и большему основанию, но еще используют инструменты, по которой устанавливается критерий конусности.

Как раньше было отмечено, в машиностроительной области критерий стандартизирован. В другой области значение может значительно различаться от установленных параметров. Определенные изделия отличаются ступенчатым расположение поверхностей. В данном случае выполнить расчеты весьма не легко, так как есть переходный диаметр.

Радиус кривизны точки

Точка – это самый простой и самый сложный элемент геометрии. Одни считают, что точка не имеет размеров, а значит и определить кривизну или радиус кривизны точки не возможно. Другие, в частности Евклид, считают, что точка не имеет частей, а каковы при этом размеры точки – не совсем понятно. Я же считаю, что точка – это начальный, далее не делимый элемент геометрии, размеры которого пренебрежимо малы по сравнению с остальными рассматриваемыми элементами. В этом случае для точки будут справедливыми следующие уравнения кривизны и радиуса кривизны:

ρт. = 0 (542.8)

kт. = 1/0 = ∞ (542.9)

И хотя нас с первых лет обучения в школе учат, что делить на 0 нельзя и даже встроенный в операционную систему калькулятор пишет, что “деление на ноль невозможно”, тем не менее делить на ноль можно, а результатом деления всегда будет бесконечность.

Как и в случае с прямой мы имеем парадоксальный результат, выражаемый формулой (542.5.2). Тем не менее точку также можно отнести к плоской кривой, имеющей постоянный радиус кривизны.

Примечание: На мой взгляд большинство из описанных выше парадоксов возникают из-за неправильного толкования понятия “бесконечность”. Бесконечность как некая абсолютная величина не имеет пределов, а значит и никакому измерению не поддается. Кроме того бесконечность – это даже не постоянная, а переменная величина. Например луч – это прямая линия с началом в некоторой точке. Длина луча может быть бесконечно большой.  При этом прямая линия тоже может быть бесконечно длинной при этом не иметь ни начала ни конца. Получается, что с одной стороны бесконечно длинный луч вроде бы в 2 раза короче, чем бесконечно длинная прямая. А с другой стороны длины их бесконечны и поэтому равны.

Возможным выходом из этой ситуации является принятие понятия “бесконечность”, как относительного. Например, кривизна прямой линии является пренебрежимо малой величиной по отношению к радиусу кривизны. Или радиус кривизны прямой линии несопоставимо больше кривизны. Подобные толкования допускают и наличие кривизны прямой и некое конечное значение радиуса кривизны прямой и многое другое. Я бы назвал такой относительный подход к рассмотрению проблемы реалистичным, а подходы, использующие абсолютные понятия – идеализированными. Впрочем прямого отношения к теме данной статьи это не имеет. Продолжим рассмотрение плоских кривых.

И окружность и прямая линия являются плоскими кривыми с постоянным радиусом кривизны. При этом радиус кривизны прямой линии всегда известен, так как равен бесконечности, а для окружности всегда можно определить радиус, воспользовавшись теоремой Пифагора. Так в частном случае, если центр окружности совпадает с началом координат  рассматриваемой плоскости (u = 0; v = 0 – координаты центра окружности), то:

Рисунок 541.4. Радиус окружности, как гипотенуза прямоугольного треугольника.

R2 = x2 + y2 (541.1.2)

А в общем случае, когда координаты центра окружности не совпадают с началом координат:

Рисунок 542.3. Окружность, центр которой не совпадает с началом координат.

R2 = (x – u)2 + (y – v)2 (542.10)

Но в жизни достаточно часто приходится сталкиваться с кривыми, радиус кривизны которых – не постоянная величина. Более того, этот радиус может изменяться в двух плоскостях измерения. Тем не менее так далеко углубляться в геометрию и алгебру мы не будем и далее рассмотрим, как можно определить радиус плоской кривой в некоторой точке.

Какие детали двигателя определяют ход поршня?

Ход поршня — это расстояние между верхней и нижней мертвыми точками поршня. Он определяется радиусом кривошипа коленчатого вала.

Радиус кривошипа — это расстояние между осевой линией вращения коленчатого вала и осевой линией шатунной шейки. Радиус кривошипа равен половине хода поршня.

В случае замены коленчатого вала другим, имеющим больший ход, верхняя мертвая точка хода поршней может оказаться над верхней плоскостью (плитой) блока цилиндров. Решить эту проблему можно, установив новые поршни, на которых поршневые пальцы стоят выше. Еще один возможный вариант — заменить шатуны более короткими, чтобы уменьшить максимальную высоту подъема поршней в цилиндрах.

При изменении длины шатуна ход поршня не изменяется, изменяется только положение мертвых точек хода поршня.

Сразу приведу список используемой литературы во избежании гнета в мой адрес

Давненько меня тревожит тема правдивости R/S и влияния этого отношения на поведение двигателя.Начитался кучу бреда на драйве о бесполезности данного коэффициента, об необоснованных расчетах и тд.В тырнете гуляет одна статья, в которой говориться, что “золотая средина R/S 1,75 и тд” и что длинный шатун лучше для высокооборотистого двигателя. В свою очередь, уважаемый многими Травников утверждает, что R/S не более чем миф, хотя верить ему в плане теории это гиблое дело.Пришлось вспомнить третий курс и немного погрузиться в расчеты кинематики Кривошипно Шатунного Механизма(далее КШМ).

Все расчеты я произвел на примере двух двигателей: F20b и F22b, которые хондовские. На мой взгляд для наглядного сравнения они подходят как нельзя кстати.Итак, в совковой литературе отсутствует такое понятие как rode to stroke, у нас применялось немного другое понятие — безразмерный параметр КШМ(отношение радиуса кривошипа к длине шатуна) — но суть от этого ничуть не изменилась.

λ = r/Lгде r — радиус колевала(кривошипа), L — длинна шатуна.Для F20b получаем λ=0,044/145=0,303Для F22b получаем λ=0,0475/141,5=0,335

В литературе четко прописано

Если рассуждать логически, то чем больше скорость, тем больше износ и потери на трение, но средняя скорость не обусловлена длинной шатуна, она зависит лишь от радиуса коленвала и оборотов двигателя.Куда более интересные для нас параметры это скорость поршня в определенный момент времени(угол поворота коленчатого вала) и его ускорение.

Где ϕ — угол поворота коленчатого вала в градусах.Зависимость от длинны шатуна присутствует в обеих формулах, я не стану расписывать решение пошагово. Все равно считал все в Екселе. Покажу сразу график

На графике видно, что скорость и ускорения поршня не сильно различаются, но все же они есть и у двигателя с более коротким шатуном скорость и ускорения поршня больше.Отсюда можно сделать вывод, что увеличивать длину шатуна смысл есть и R/S отнюдь не миф и не байка.Но увеличение шатуна ведет к увеличению его массы и изменению развесовки, что в свою очередь увеличивает растяжение шатуна при высоких оборотах, соответственно, увеличивать шатун есть смысл до того момента, пока сила растяжения шатуна на желаемых нами оборотах не превзойдет силу его инерции, но это уже совсем отдельный расчет и для каждого двигателя он будет свой.Спасибо за внимание.В R/S сила, друзья

Поделитесь в социальных сетях:FacebookX
Напишите комментарий