Погрешность базирования

Погрешность базирования

Погрешность базирования – отклонение фактической позиции установленной заготовки относительно заданного положения. Она возникает во время процесса базирования – процедуры регулировки местоположения заготовки в выбранной системе координат, влияющей на размер исходной детали. Также погрешность появляется в процессе обработки, сборки и настройки изделия на производственных токарных станках. На точность обработки влияют такие факторы, как форма детали и её размеры, прописанные инженерами в чертежах или эскизах. Каждый мастер должен знать, как определить погрешность базирования, чтобы не допустить ошибок при базировании деталей, её обработке и выполнении монтажных работ над заготовками.

Определение допустимой погрешности базирования осуществляется главным образом по формуле εБ.ДОП = δ — ∆. При её расчёте следует учитывать, что действительное отклонение должно всегда быть меньше предельно допустимых значений. Полученный результат измерений всегда будет приблизительным.

Слайд 10Погрешности от геометрических неточностей станкаПогрешности обработки, возникающие вследствие геометрических

неточностей станкаПри точении консольно закрепленной заготовки в результате отклонения от

параллельности оси шпинделя и направляющих станины образуется конусообразность где – отклонение от параллельности на длине l, – длина обработанной поверхности.При обработке поверхностей на вертикально-фрезерных станках вследствие отклонения от параллельности рабочей поверхности стола и его продольных направляющих возникает отклонение от параллельности обработанной и установочной поверхностейОтклонение от перпендикулярности оси шпинделя вертикально-фрезерного станка и поверхности стола в продольном направлении вызывает вогнутость обработанной поверхности.

Расчет погрешности базирования заготовки в приспособлении

Погрешностью базирования называется отклонение конструкции заготовки относительно заданного местоположения. Она применяется во время обработки, эксплуатации и настройки детали на токарных или фрезерных станках. Выделяют следующие разновидности погрешности базирования заготовки:

Погрешность закрепления: возникает при зажатии детали на столе станка. Во время этого процесса происходит смещение установочных баз, лимитирующих движение заготовки. Погрешность закрепления обусловлена неправильным использованием установочных приборов и зажимов. Данные факторы приводят к деформации заготовленного материала. Погрешность установки: появляется после закрепления изделия на станковом оборудовании. Ее возникновение обусловлено несоответствие форм базовых поверхностей и наличие большого количества металлической стружки, образующейся во время нарезания детали. Происходит засорение обрабатываемой поверхности и последующее отклонение детали

Для минимизации погрешности заготовки важно следовать принципам постоянства и смещения базовых поверхностей. Систематическая погрешность: образуется из-за человеческого фактора —наблюдательности и аккуратности мастера, выполняющего настройку инструментов

Она возникает при нарушениях во время измерения размерных характеристик детали, написании неправильных чертежей и схем базирования и упрощении формул, необходимых для проведения расчетов

Она возникает при нарушениях во время измерения размерных характеристик детали, написании неправильных чертежей и схем базирования и упрощении формул, необходимых для проведения расчетов.

На величину погрешности и точность обработки оказывают непосредственное влияние следующие факторы:

  1. Разница между действительными и номинальными размерами заготовки.
  2. Значение отклонения устанавливаемых конструкций относительно их взаимных расположений: перпендикулярности, концентричности и параллельности.
  3. Поломка станков и иных приспособлений, использующихся во время базирования. Неисправность оборудования обусловлена несоблюдением правил эксплуатации или недочетами, возникшими во время производства несущих конструкций приборов. Эти факторы приводят к возникновению зазоров на винтах и шпинделях установочного оборудования.
  4. Изменение формы заготовки, произошедшие до проведения процедуры обработки. Они обусловлены внешними повреждениями конструкции или неправильным местоположением изделия.

Расчет погрешности базирования проводится при помощи использования математической формулы: εБ.ДОП ≤δ — ∆

Во время определения величины отклонения важно учитывать, что действительная погрешность обязана быть меньше допустимых значений. Результат расчетов всегда является неточным. Для расчета погрешности был разработан общий алгоритм вычисления:

Для расчета погрешности был разработан общий алгоритм вычисления:

Для расчета погрешности был разработан общий алгоритм вычисления:

  1. Необходимо правильно определить местоположение базы на основе размеров устанавливаемой детали.
  2. Найти расположение технологической базовой поверхности, что позволит мастеру правильно подобрать место размещения заготовки для проведения ее обработки.
  3. Если технологическая база совмещается с измерительной, то погрешность базирования будет равняться 0.
  4. В случае, когда базы различаются и не совмещаются при наложении, то осуществляются геометрические расчеты величины отклонения. Результаты измерения вычитаются из предельно допустимых значений погрешности. Разность показывает действительную величину отклонения изделия. Все расчеты производятся по общей формуле: = Т — ∆ж.

Если отсутствуют общий базис и предельные значений погрешности, то необходимо найти исходную базовую поверхность. Если она не изменяет исходное местоположение, то значение погрешности равняется 0.

Базирование призматической заготовки

Призмой является многогранник, у которого 2 грани являются равными многоугольниками. Она представляет собой установочное приспособление. Его поверхность является пазом и образована 2 наклонными плоскостями. Изготавливаются призматические фигуры с углом 90° и 120°. В промышленности призмы используются для нахождения расположения оси детали с неполной цилиндрической поверхностью. Эта фигура способна определять положение осей абсцисса, ордината и аппликата, поэтому она используется при базировании.

Во время базирования детали в призме опоры располагаются в координатных плоскостях. Призматическая заготовка базируется в координатный угол для выполнения принципа совмещения баз. При размещении заготовки в призме используются 3 поверхности. Под углом в 90° к изделию прикладывается сила. В результате возникновения трения между соприкоснувшимися поверхностями уменьшается величина смещения изделия в различных направлениях.

Если поменять направления вектора прикладываемой силы, то заготовка прижмется ко всем установочным базам одновременно. Если на установочной базе присутствует припуск, то его нужно удалить при помощи регулируемых опор. Заготовка не сможет двигаться вдоль координатных осей, потому что она лишена всех 6 степеней свободы. Установочной базой выступает плоскость с наибольшим размером. Направляющей базой считается поверхность с наибольшими показателями протяженности.

Для определения местоположения выбирается призма с неширокими установочными базами. Если деталь располагает обработанной базой, то используют призму с большой длиной. При базировании в призме возможно определить направление только в 1 координатной плоскости.

Схема базирования призматических деталей.

Всякое твердое тело, рассматриваемое в системе трех взаимно-перпендикулярных осей, может иметь шесть степеней свободы: три перемещения вдоль осей OX, OY, OZи повороты относительно тех же осей.

Три координаты, определяющие положение детали относительно плоскости XOY, лишают трех степеней свободы – возможности перемещаться вдоль оси OZ и вращаться вокруг осей OY и OX.

Две координаты, определяющие положение детали относительно плоскости ZOY, лишают ее двух степеней свободы – возможности перемещаться в направлдении сои OX и вращаться вокруг оси OZ.

Шестая координата, определяющая положение детали относительно плоскости XOZ, лишаете последней степени свободы – возможности перемещаться в направлении оси OY.

Поверхность детали, несущая три опорные точки, называется главной базирующей поверхностью; боковая поверхность с двумя точками – направляющей; торцовая поверхность с одной точкой – упорной.

В качестве главной базы желательно выбирать поверхность, имеющую наибольшие габариты. В качестве направляющей – поверхность наибольшей протяженности.

(3.7)

где  К = 1,5- гарантированный коэффициент запаса для всех случаев;

К = 1- коэффициент, учитывающий состояние поверхности заготовки,   при чистовой обработке;

К = 1,7 -коэффциент, учитывающий увеличение силы резания от прогрессивного  затупления инструмента;

К = 1-коэффициент, учитывающий увеличение силы резания при прерывистом резании;

К = 1,3-коэффициент, учитывающий постоянство силы зажима, развиваемой силовым приводом приспособления, при перемещении ручного зажима;

К = 1-коэффициент, учитывающий эргономику ручных зажимных устройств, при удобном расположении рукояток и малом угле поворота рукоятки;

К = 1-коэффициент, учитываемый только при наличии крутящих моментов, стремящихся повернуть обрабатываемую деталь, при установке детали на опорные планки или другие элементы с большой поверхностью контакта;

Схемы базирования

Схемой базирования называется чертеж, где с помощью графического изображения указывается местоположение опорных точек устанавливаемого изделия на поверхностях базирования. Базы подразделяются на следующие подвиды:

  1. Конструкторские: определяют местоположение сборочного элемента, принадлежащего заготовке.
  2. Технологические: указывают относительное местонахождение детали во время ее обработки, эксплуатации или ремонтирования.
  3. Измерительные: находят месторасположение изделия и элементов измерения.

База может лишать обрабатываемый объект от 1 до 3 степеней свободы, что исключает возможность его передвижения в координатной системе. На схемах она обозначается в виде мнимой или реальной плоскости. Базы выбираются во время проектирования изделия и используется при изготовлении и последующей обработке заготовки.

При выборе базовых поверхностей применяются принципы совмещения и постоянства базовых поверхностей. В виде технологических баз выступают одинаковые поверхности заготовки. Во время наложения баз возникает небольшое отклонение детали. Для поддержания данных принципов на изделиях образуют несколько вспомогательных поверхностей: отверстия в деталях корпуса и обработанные отверстия. Если принципы не соблюдаются, то берется обработанная поверхность, выступающая в качестве новой базы. Она улучшает точность и жесткость расположения детали.

На схеме базирования все точки имеют собственную нумерацию. Во время наложения геометрических поверхностей изображается точка, вокруг которой указываются номерные знаки совмещенных точек. Процесс нумерации осуществляется с основной базы, концентрирующей на себе наибольшее число точек опоры.

При нанесении графических обозначений на схему должно быть изображено наименьшее количество проекций детали, достаточных для изображения основных точек опоры. Также на ней необходимо изобразить установочные элементы, служащих для закрепления детали: зажимы и цанговые патроны.

Построение схемы базирования производится по правилу шести точек. Оно заключается в лишении заготовки 6 степеней свободы при помощи использования наборов из 3 баз с 6 точками опоры. С его помощью происходит одновременное наложение 6 двухсторонних геометрических связей, что обеспечивает полную неподвижность детали. Если осуществляется базирование конической заготовки, то для обеспечения ее устойчивого положения необходимо применять набор из 2 базовых поверхностей.

При базировании изделий в промышленности используется способ автоматического получения размерных характеристик заданной точности на станках с предварительно установленными настройками. Установка упоров осуществляется от технологических базовых поверхностей заготовки. Во время этой процедуры используется набор из 3 баз. При этом также применяют полную схему базирования, лишая изделие 6 степеней свободы.

Схемы для определения местоположения детали подразделяются на следующие категории:

  1. Базирование детали по торцу и отверстию, образующими 5 точек опоры. Этот вид схемы базирования упрощает процесс определения местоположения заготовки. Он широко применяется при обработке моторов-редукторов и скоростных коробок.
  2. Базирование изделия по плоскости, отверстию и торцу. В этом случае оси установочных элементов детали параллельны базовой поверхности. Посредством этой категории схем осуществляется полное базирование. Отличительной особенностью этого вида базирования является высокая точность размещения отверстий.
  3. Базирование по 2 отверстиям, пересекающимся с плоскостью под углом в 90°. Данный вид схемы позволяет применять принцип постоянства во время производственных процессов и осуществлять закрепление заготовок на автоматических линиях.

Применение схем зависит от величины диаметра и местоположения отверстий, а также от расстояния между обрабатываемыми поверхностями.

(3.7)

где  К = 1,5- гарантированный коэффициент запаса для всех случаев;

К = 1- коэффициент, учитывающий состояние поверхности заготовки,   при чистовой обработке;

К = 1,7 -коэффциент, учитывающий увеличение силы резания от прогрессивного  затупления инструмента;

К = 1-коэффициент, учитывающий увеличение силы резания при прерывистом резании;

К = 1,3-коэффициент, учитывающий постоянство силы зажима, развиваемой силовым приводом приспособления, при перемещении ручного зажима;

К = 1-коэффициент, учитывающий эргономику ручных зажимных устройств, при удобном расположении рукояток и малом угле поворота рукоятки;

К = 1-коэффициент, учитываемый только при наличии крутящих моментов, стремящихся повернуть обрабатываемую деталь, при установке детали на опорные планки или другие элементы с большой поверхностью контакта;

Слайд 3Пример расчета погрешности базирования В данном случае при обработке наружного

диаметра партии втулок на настроенном станке погрешность базирования будет определяться

смещением оси заготовки относительно линии центров станка, а также ее поворотом на некоторый угол к линии центров. Величины смещения и поворота определяются зазором между оправкой и поверхностью базового отверстия, а также отклонением от перпендикулярности торца заготовки к оси отверстия, т.е. биением торца. Смещение оси заготовки относительно линии центров станка приведет к отклонению от соосности обработанной поверхности и базового отверстия, а торцовое биение – к отклонению от цилиндричности обработанной поверхности (конусности). Погрешность базирования, обусловленную смещением заготовки относительно линии центров станка, можно представить в виде – смещение отверстия заготовки относительно оси оправки; – смещение оси цилиндрической поверхности оправки относительно линии центров станка.

Расчет погрешности базированияПусть требуется определить погрешность базирования втулки на жесткой оправке с зазором и упором в торец при точении наружной поверхности диаметром D=65-0,19 . Заданные размеры: doпр=30-0,03; dотв=30+0,13; l=50. Наружная поверхность партии заготовок обработана в размер D3 = 66-0,3 .

Погрешность – базирование

Погрешность базирования ее есть отклонение фактически достигнутого положения заготовки при базировании от требуемого; определяется, как предельное поле рассеяния расстояний между технологической и измерительной базами в направлении выдерживаемого размера.  

Погрешность базирования возникает вследствие несовмещения установочной базы с измерительной.  

Схема сверления заготовок, установленных на призме.  

Погрешность базирования А & б определяют соответствующими геометрическими расчетами или анализом размерных цепей, что обеспечивает в ряде случаев более простое решение задачи.  

Погрешность базирования в схемах 11 – 16 включает погрешность приспособления ДБпр.  

Погрешность базирования е – разность предельных расстояний измерительной базы относительно установленного на размер инструмента, возникающая при несовмещении измерительной и установочной ( технологической) баз в результате неточностей формы и размеров обрабатываемой детали.  

Погрешность базирования определяется из геометрических связей в зависимости от принятой схемы установки, а погрешность закрепления – также и в зависимости от силы зажатия.  

Погрешность базирования е6 возникает в результате базирования заготовки в приспособлении по технологическим базам, не связанным с измерительными базами.  

Погрешность базирования имеет место при несовмещении измерительной и установочной баз заготовки. В этом случае положение измерительных баз отдельных заготовок в партии будет различным относительно обрабатываемой поверхности.  

Погрешность базирования влияет на точность выполнения линейных размеров ( кроме диаметральных и связывающих противолежащие элементы, получаемые мерным инструментом), на точность взаимного положения поверхностей и не влияет на точность их форм.  

Погрешность базирования при установке в призму является функцией допуска на диаметр цилиндрической поверхности заготовки, а также зависит от погрешностей ее формы.  

Погрешность базирования ( несовпадение измерительной базы с установочной) при закреплении обрабатываемой заготовки в патрон.  

Погрешность базирования возникает от нарушения единства сборочной и метрологической баз в процессе установки тарелок.  

Погрешность базирования может быть представлена функцией комплекса параметров, определяющих погрешность.  

Погрешность базирования при несовмещенных установочной и измерительной базах определяется разностью предельных расстояний измерительной базы от установленного на размер режущего инструмента.  

Схемы базирования

Схемой базирования называется чертеж, где с помощью графического изображения указывается местоположение опорных точек устанавливаемого изделия на поверхностях базирования. Базы подразделяются на следующие подвиды:

  1. Конструкторские: определяют местоположение сборочного элемента, принадлежащего заготовке.
  2. Технологические: указывают относительное местонахождение детали во время ее обработки, эксплуатации или ремонтирования.
  3. Измерительные: находят месторасположение изделия и элементов измерения.

База может лишать обрабатываемый объект от 1 до 3 степеней свободы, что исключает возможность его передвижения в координатной системе. На схемах она обозначается в виде мнимой или реальной плоскости. Базы выбираются во время проектирования изделия и используется при изготовлении и последующей обработке заготовки.

При выборе базовых поверхностей применяются принципы совмещения и постоянства базовых поверхностей. В виде технологических баз выступают одинаковые поверхности заготовки. Во время наложения баз возникает небольшое отклонение детали. Для поддержания данных принципов на изделиях образуют несколько вспомогательных поверхностей: отверстия в деталях корпуса и обработанные отверстия. Если принципы не соблюдаются, то берется обработанная поверхность, выступающая в качестве новой базы. Она улучшает точность и жесткость расположения детали.

На схеме базирования все точки имеют собственную нумерацию. Во время наложения геометрических поверхностей изображается точка, вокруг которой указываются номерные знаки совмещенных точек. Процесс нумерации осуществляется с основной базы, концентрирующей на себе наибольшее число точек опоры.

При нанесении графических обозначений на схему должно быть изображено наименьшее количество проекций детали, достаточных для изображения основных точек опоры. Также на ней необходимо изобразить установочные элементы, служащих для закрепления детали: зажимы и цанговые патроны.

Построение схемы базирования производится по правилу шести точек. Оно заключается в лишении заготовки 6 степеней свободы при помощи использования наборов из 3 баз с 6 точками опоры. С его помощью происходит одновременное наложение 6 двухсторонних геометрических связей, что обеспечивает полную неподвижность детали. Если осуществляется базирование конической заготовки, то для обеспечения ее устойчивого положения необходимо применять набор из 2 базовых поверхностей.

При базировании изделий в промышленности используется способ автоматического получения размерных характеристик заданной точности на станках с предварительно установленными настройками. Установка упоров осуществляется от технологических базовых поверхностей заготовки. Во время этой процедуры используется набор из 3 баз. При этом также применяют полную схему базирования, лишая изделие 6 степеней свободы.

Схемы для определения местоположения детали подразделяются на следующие категории:

  1. Базирование детали по торцу и отверстию, образующими 5 точек опоры. Этот вид схемы базирования упрощает процесс определения местоположения заготовки. Он широко применяется при обработке моторов-редукторов и скоростных коробок.
  2. Базирование изделия по плоскости, отверстию и торцу. В этом случае оси установочных элементов детали параллельны базовой поверхности. Посредством этой категории схем осуществляется полное базирование. Отличительной особенностью этого вида базирования является высокая точность размещения отверстий.
  3. Базирование по 2 отверстиям, пересекающимся с плоскостью под углом в 90°. Данный вид схемы позволяет применять принцип постоянства во время производственных процессов и осуществлять закрепление заготовок на автоматических линиях.

Применение схем зависит от величины диаметра и местоположения отверстий, а также от расстояния между обрабатываемыми поверхностями.

Понятие и классификация

Под термином погрешность принято понимать степень отклонения реальной величины от вычисленной. Этот показатель служит мерой точности измерения.

Существует несколько разновидностей погрешности:

  1. Абсолютная — оценка ошибки в абсолютных единицах. Величина ее может быть разной в зависимости от способа расчета.
  2. Относительная — отношение абсолютной величины к тому значению, которое принято считать истинным. Измеряется в процентах.
  3. Приведенная — разновидность относительной. Ее вычисляют отношением абсолютной и условной постоянной величины, определяется в процентах.
  4. Приборная или инструментальная — погрешность, которую дают технические средства измерений. Она обусловлена неточной цифровой градуировкой приборов или недостаточной наглядностью. Класс точности приборов будет равен максимальной приведенной погрешности и выражается в процентах. К примеру, класс точности вольтметра ΔU = ±0,75 В.
  5. Методическая — связанная с несовершенством метода измерения или его чрезмерным упрощением.
  6. Субъективная или операторная — погрешность, связанная с личными свойствами оператора — невнимательностью, утомлением, профессиональной подготовленностью.
  7. Случайная. Погрешность, которая может изменяться при разных измерениях. Изменения возможны по знаку или величине отклонения. Причиной может быть техническое несовершенство приборов отсчета или объекта измерения, неблагоприятные для работы условия или особенности измеряемых единиц.
  8. Систематическая. Погрешность, изменения которой имеют некоторую закономерность во времени. В качестве частного случая допускают постоянное отклонение, которое не изменяется во времени.
  9. Прогрессирующая или дрейфовая — медленно изменяется во времени и не может быть предсказана. Такое отклонение относится к случайным.
  10. Грубая или промах. Значительное отклонение от принятой нормы. Возникает в результате неисправности аппаратуры или ошибки экспериментатора.

Абсолютная и относительная погрешности

Точность полученного в результате вычисления результата определяется погрешностью вычислений. Различают два вида погрешностей – абсолютную и относительную.

Абсолютная погрешность некоторого числа равна разности между его истинным значением и приближенным значением, полученным в результате вычисления или измерения:

          (А.1)

где а – приближенное значение числа х.

Относительная погрешность – это отношение абсолютной погрешности к приближенному значению числа:

           (А.2)

Истинное значение величины х обычно неизвестно. Имеется лишь приближенное значение а и нужно найти его предельную погрешность . В дальнейшем значение  принимается в качестве абсолютной погрешности приближенного числа а. Тогда истинное значение х находится в интервале .

Схемы базирования

Схемой базирования называется чертеж, где с помощью графического изображения указывается местоположение опорных точек устанавливаемого изделия на поверхностях базирования. Базы подразделяются на следующие подвиды:

  1. Конструкторские: определяют местоположение сборочного элемента, принадлежащего заготовке.
  2. Технологические: указывают относительное местонахождение детали во время ее обработки, эксплуатации или ремонтирования.
  3. Измерительные: находят месторасположение изделия и элементов измерения.

База может лишать обрабатываемый объект от 1 до 3 степеней свободы, что исключает возможность его передвижения в координатной системе. На схемах она обозначается в виде мнимой или реальной плоскости. Базы выбираются во время проектирования изделия и используется при изготовлении и последующей обработке заготовки.

При выборе базовых поверхностей применяются принципы совмещения и постоянства базовых поверхностей. В виде технологических баз выступают одинаковые поверхности заготовки. Во время наложения баз возникает небольшое отклонение детали. Для поддержания данных принципов на изделиях образуют несколько вспомогательных поверхностей: отверстия в деталях корпуса и обработанные отверстия. Если принципы не соблюдаются, то берется обработанная поверхность, выступающая в качестве новой базы. Она улучшает точность и жесткость расположения детали.

На схеме базирования все точки имеют собственную нумерацию. Во время наложения геометрических поверхностей изображается точка, вокруг которой указываются номерные знаки совмещенных точек. Процесс нумерации осуществляется с основной базы, концентрирующей на себе наибольшее число точек опоры.

При нанесении графических обозначений на схему должно быть изображено наименьшее количество проекций детали, достаточных для изображения основных точек опоры. Также на ней необходимо изобразить установочные элементы, служащих для закрепления детали: зажимы и цанговые патроны.

Построение схемы базирования производится по правилу шести точек. Оно заключается в лишении заготовки 6 степеней свободы при помощи использования наборов из 3 баз с 6 точками опоры. С его помощью происходит одновременное наложение 6 двухсторонних геометрических связей, что обеспечивает полную неподвижность детали. Если осуществляется базирование конической заготовки, то для обеспечения ее устойчивого положения необходимо применять набор из 2 базовых поверхностей.

При базировании изделий в промышленности используется способ автоматического получения размерных характеристик заданной точности на станках с предварительно установленными настройками. Установка упоров осуществляется от технологических базовых поверхностей заготовки. Во время этой процедуры используется набор из 3 баз. При этом также применяют полную схему базирования, лишая изделие 6 степеней свободы.

Схемы для определения местоположения детали подразделяются на следующие категории:

  1. Базирование детали по торцу и отверстию, образующими 5 точек опоры. Этот вид схемы базирования упрощает процесс определения местоположения заготовки. Он широко применяется при обработке моторов-редукторов и скоростных коробок.
  2. Базирование изделия по плоскости, отверстию и торцу. В этом случае оси установочных элементов детали параллельны базовой поверхности. Посредством этой категории схем осуществляется полное базирование. Отличительной особенностью этого вида базирования является высокая точность размещения отверстий.
  3. Базирование по 2 отверстиям, пересекающимся с плоскостью под углом в 90°. Данный вид схемы позволяет применять принцип постоянства во время производственных процессов и осуществлять закрепление заготовок на автоматических линиях.

Применение схем зависит от величины диаметра и местоположения отверстий, а также от расстояния между обрабатываемыми поверхностями.

3.1.2 Расчёт погрешности установки детали в приспособление

При расчете приспособления на точность суммарная погрешность ε при обработке детали не должна превышать величину допуска Т выполняемого размера при обработке детали.

Погрешность установки εу заготовки определяется по формуле:

,мм                                                   (3.1)

где   – погрешность базирования

– погрешность закрепления

Погрешность базирования ε представляет собой отклонение фактического положения заготовки от требуемого и определяется как предельный допуск рассеяния расстояния м/д измерительной и технологической базами в направлении выполняемого размера.

Возникает погрешность базирования ε при не совмещении технологической и измерительной баз, при совпадении этих баз данная погрешность равна нулю

Таблица 1-Расчет погрешности установки

7±0,5

1

0,12

0,12

Совпадение измерительной и технологической базы

125H15

1,6

0,16

0,16

Совпадение измерительной и технологической базы

14P9

0,11

Обеспечивается инструментом

5,5

0,2

0,021

0,12

0,12

Расчёт производится по В.И.Климов «Справочник инструментальщика».(с.415)

Выбираем число заходов фрезы n=28

Шаг зубьев в
нормальном сечении

                            tn=mπn  , мм                                                              
(3.10)

tn=2,1167×3,14×1=6,65 мм

Ход зубьев по нормали

tzn=tn×n ,
мм                                                           (3.11)

tzn=1×28=28 мм

Толщина
зуба в нормальном сечении

Sn=tn-S =3,65   мм                                
                       (3.12)

Высота
головки зуба фрезы

hau=hf=6 мм

Коэффициент зазора между валом и фрезой с=0,25

Высота
ножки зуба фрезы

hfu=ha+cm  ,  мм                                                           (3.13)

hfu=1,3335+0,25×2,1167=1,86, мм

Полная высота зуба фрезы                                                         

hu=hau+hfu, мм                                                             (3.14)

hu =1,1665+1,86=3,03 мм                                                            

Радиус закруглпния головки зуба

r=0,25m  ,    мм                                                              (3.15)

r=0,25×2,1167=0,53 мм

Радиус
закругления ножки зуба

r=0,2×m ,
мм                                                                  (3.16)

r=0,2 ×2,1167=0,42 мм

Толщина
зуба на вершине фрезы

Sa=Sn-2hau×tgα ,  мм                                                   (3.17)

Sa=3,32-2 ×1,1665×tg30=1,97 мм

Определение
конструктивных размеров фрезы

Передний
угол фрезы у=5

Задний
угол при вершине αβ=20

Величина
заднего угла на боковых сторонах профиля

tgαδ=tgαβ×sinα=5                                                     
 (3.18)

Диаметр
посадочной поверхности фрезы

do=14мм                                                                    
 (3.19)

выбираем ближайшее значение do=14 мм

Наружный
диаметр Фрезы выбираем
по таблице 4(с.175) Da=13,8мм

Число зубьев
фрезы zu=2                                                               
(3.20)

Величина
затылования

                                                             (3.21)

Величина
дополнительного затылования

К1=1,2×К                                                                     
(3.22)

К=1,12×1=1,12

округляем
до ближайшего большего К=2,5

Глубина
стружечной канавки

Н=hu+(k+k1)/2+1,
мм                                                       (3.23)

Н=3,03+(1+2,5)/2+1=2,17мм

Угол
стружечной канавки принимаем σ=25 (с.416)

Средний
расчётный диаметр

Dt=Da-2×hau-2×0.3×k , мм                                               (3.24)

Dt=10,5мм

Угол наклона
винтовой линии

sinω=m×n/Dt                                                                     
(3.25)

sinω=1,99

Шаг винтовой
линии

Т=π×Dt×ctgω , мм                                                              (3.26)

T=3,14×10,5×ctg1,99=121мм

Шаг витков
по оси

to=tn/cosω, мм                                                                   
(3.27)

to=6,65/cos1,99=6,65 мм

Профильный
угол фрезы в осевом сечении

tgαос=tgα/ cosω=30

сtgαос=1,73

         Размеры
фрезы

Диаметр буртиков фрезы                                                                                                             (3.29)

d1=Da-2×H-2, мм

d1=13мм

Длина
буртиков

l=20мм

Длина фрезы

L =63мм

3.3 Расчёт и конструирование измерительного
инструмента

Абсолютная и относительная погрешности

Точность полученного в результате вычисления результата определяется погрешностью вычислений. Различают два вида погрешностей – абсолютную и относительную.

Абсолютная погрешность некоторого числа равна разности между его истинным значением и приближенным значением, полученным в результате вычисления или измерения:

          (А.1)

где а – приближенное значение числа х.

Относительная погрешность – это отношение абсолютной погрешности к приближенному значению числа:

           (А.2)

Истинное значение величины х обычно неизвестно. Имеется лишь приближенное значение а и нужно найти его предельную погрешность . В дальнейшем значение  принимается в качестве абсолютной погрешности приближенного числа а. Тогда истинное значение х находится в интервале .

Погрешность базирования

Погрешность базирования – отклонение фактической позиции установленной заготовки относительно заданного положения. Она возникает во время процесса базирования – процедуры регулировки местоположения заготовки в выбранной системе координат, влияющей на размер исходной детали. Также погрешность появляется в процессе обработки, сборки и настройки изделия на производственных токарных станках. На точность обработки влияют такие факторы, как форма детали и её размеры, прописанные инженерами в чертежах или эскизах. Каждый мастер должен знать, как определить погрешность базирования, чтобы не допустить ошибок при базировании деталей, её обработке и выполнении монтажных работ над заготовками.

Определение допустимой погрешности базирования осуществляется главным образом по формуле εБ.ДОП = δ — ∆. При её расчёте следует учитывать, что действительное отклонение должно всегда быть меньше предельно допустимых значений. Полученный результат измерений всегда будет приблизительным.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий