Шариковые винтовые передачи (ШВП) SBC
Шариковая винтовая передача – наиболее распространенная разновидность передачи винт-гайка качения (винтовая пара с промежуточными телами качения: шариками или роликами).
Функционально ШВП (шарико-винтовая передача) служит для преобразования вращательного движения в возвратно-поступательное (и наоборот). ШВП обладает всеми основными техническими преимуществами передачи винт-гайка скольжения, и при этом не имеет ее главных недостатков, таких как низкий КПД, повышенные потери на трение, быстрый износ.
Конструктивно ШВП состоит из винта и гайки с винтовыми канавками криволинейного профиля. Канавки служат дорожками качения для размещенных между витками винта и гайки шариков. Перемещение шариков происходит по замкнутой траектории – при вращении винта шарики вовлекаются в движение по винтовым канавкам, поступательно перемещают гайку и через перепускной канал (канал возврата) возвращаются в исходное положение. Каналы возврата выполняются в специальных вкладышах, которые вставляются в соответствующее окно гайки, по числу рабочих витков.
При работе передачи шарики, пройдя по винтовой канавке на винте свой виток, выкатываются из резьбы в перепускной канал вкладыша, переваливают через выступ резьбы и возвращаются в исходное положение на тот же или на соседний (в зависимости от конструкции) виток. Для передач с многозаходной резьбой применяется особый тип исполнения гайки.
Число рабочих витков в ШВП обычно составляет от 1 до 6. Большее число витков применяется только в сильно нагруженных передачах, например, тяжелых станков.
Основные достоинства шариковинтовой передачи:
- малые потери на трение;
- высокая нагрузочная способность при малых габаритах;
- размерное поступательное перемещение с высокой точностью;
- высокое быстродействие;
- плавный и бесшумный ход.
К недостаткам шариковинтовой передачи можно отнести:
- сложность конструкции гайки;
- ограничение по длине винта (из-за накапливаемой погрешности);
- ограничение по скорости вращения винта (из-за вибрации);
- высокую стоимость (исполнения с шлифованным винтом).
Высокоточные ШВП (шарико-винтовые передачи) производства SBC
SBC Linear Co., Ltd (Сеул, Корея) – крупнейший азиатский производитель систем и компонентов линейных перемещений.
Продуктовая линейка компании включает рельсовые направляющие качения, цилиндрические линейные направляющие и линейные подшипники, линейные модули, системы роликовых направляющих и т. д. Отдельную товарную группу составляют высокоточные шлифованные ШВП и катаные ШВП, изготовленные по PSF-технологии.
SBC выпускает 4 серии шариковинтовых передач, которые различаются по конструкции гайки и шагу винта*, точности исполнения и доступным типоразмерам.
Серия STK. Диаметр винта – от 16 до 80 мм. Стандартный шаг винта – 5 мм (с увеличением диаметра винта возрастает до 10 мм и до 15 мм). Прецизионная фланцевая гайка. Классы точности – C5. Может поставляться с преднатягом и без него.
Серия SLK. Диаметр винта – от 16 до 62,5 мм. Фланцевая гайка с шагом от 10 до 40 мм в зависимости от типоразмера. Классы точности – C5. Может поставляться с преднатягом и без него.
Серия ZG. Диаметр винта – от 16 до 80 мм. Безфланцевая гайка с метрической резьбой по внешней поверхности. Стандартный шаг винта – 5 мм (с увеличением диаметра винта возрастает до 10 мм и до 15 мм). Классы точности – C5. Может поставляться с преднатягом и без него.
Серия MBS. Диаметр винта – от 6 до 12 мм. Фланцевая гайка с коротким шагом (от 1 до 5 мм). Классы точности – C5. Может поставляться с преднатягом и без него.
Максимальная длина винта для всех ШВП – 6 метров. Винты поставляются с предварительно обработанными концами (на выбор предлагаются несколько стандартных типов высокоточной обработки). Для нестандартных решений возможна обработка концов по ТЗ заказчика.
Для монтажа ШВП в машину или механизм предусмотрен достаточно большой выбор концевых опор, в т. ч. на подшипниках.
Все данные для расчета технических параметров и методика подбора ШВП для конкретных условий приведены в каталоге продукции.
ШВП (шарико-винтовые передачи) производства SBC рекомендованы к использованию в следующих отраслях промышленности:
- точное машиностроение;
- станкостроение;
- приборостроение;
- медицинская техника;
- подъемно-транспортное оборудование;
- научное и лабораторное оборудование;
- упаковочное оборудование;
- оборудование для пищевой промышленности;
- оборудование для химической промышленности.
*Шаг винта – перемещение по оси (в мм), которое гайка совершает за один оборот.
Документация по ШВП
ШВП, опоры, обработка концов 07.02.2021
Конструкция и принцип действия
Передачи вращательного движения | Изображение |
---|---|
Зубчатая передача состоит из двух зубчатых колес, находящихся в зацеплении: колесо, расположенное на передающем вращение валу, называется ведущим, а на получающем вращение — ведомым. Меньшее из двух колес сопряженной пары называют шестернёй; большее — зубчатым колесом. Ведущий вал, на котором расположено зубчатое колесо, приводится в движение двигателем. Зубчатое колесо входит в зацепление с шестерней на ведомом валу, благодаря чему ему сообщается вращательное движение. | |
Червячная передача состоит из червяка (винта) и червячного колеса, которые находятся в зацеплении. Ведущим чаще всего является червяк, ведомым — червячное колесо. Валы, на которых расположены элементы червячной передачи, обычно скрещиваются под углом 90°. Как правило, червяк соединяется при помощи муфты с электродвигателем, а вал червячного колеса соединяется с устройствами, которым он и передает необходимое вращение. | |
Ременная передача состоит из ведущего и ведомого шкивов и закреплённого на них ремня (одного или нескольких). Двигатель приводит в движение вал, на котором находится ведущий шкив. За счёт силы трения между ремнем и ведущим шкивом начинает вращаться ведомый шкив. | |
Цепная передача состоит из ведущей и ведомой звёздочки (колес с зубьями) и цепи с подвижными звеньями, закреплённой на них. Вал с ведущей звёздочкой приводится в движение, цепь передаёт вращение ведомой звёздочке, также расположенной на валу. | |
Передачи возвратно-поступательного движения | Изображение |
Реечная передача состоит из зубчатой рейки и зубчатого колеса, находящихся в зацеплении. Двигатель приводит в движение вал с зубчатым колесом. При каждом обороте колеса зубчатая рейка перемещается прямолинейно-поступательно. | |
Винтовая передача состоит из винта и гайки. При вращении винта гайка перемещается поступательно. Винтовые передачи разделяют на передачи скольжения (винт-гайка скольжения) и передачи качения (винт-гайка качения или шарико-винтовая пара). Основное их различие — в передачах качения применяются тела качения, уменьшающие трение при перемещении и обеспечивающие плавность хода.Принцип действия винт-гайки скольжения: винт начинает вращаться благодаря двигателю. Благодаря силам скольжения гайка перемещается по резьбе винта поступательно.Принцип действия винт-гайки качения: при вращении винта тела качения (например, шарики) вовлекаются в движение по винтовым канавкам, поступательно перемещают гайку и через перепускной канал (канал возврата) возвращаются в исходное положение. | Винт-гайка скольжения Винт-гайка качения |
Критическая скорость вращения шарикового винта
Как и у любого торсионного вала, у шарикового винта есть критическая скорость, которая является гармоническим колебанием. Постоянное вращение шарикового винта в диапазоне критической скорости сократит период эксплуатации, и может повлиять на производительность машины. Критическая скорость является функциональной зависимостью диаметра, длины шарикового винта и конфигурации монтажа. Осевой зазор гайки не оказывает влияние на критическую скорость nk.
Операционная скорость не должна превышать 80% от критической скорости. Формула ниже для подсчета допустимой скорости nkzyl учитывает этот фактор безопасности 0,8.
,где Nk – критическая скорость (число оборотов в минуту) Nkzyl – рабочая скорость вращения (число оборотов в минуту) α – фактор безопасности (=0,8) E – модуль эластичности (E=2,06*105 Н/мм2) l – геометрический момент инерции (мм2) d2 – диаметр стержня шарикового винта (мм) γ – специфическая плотность материала (7,6*10 -5 Н/мм3) g – постоянная величина земной гравитации (9,8*10 3 мм/с2) А – поперечное сечение шарикового винта (мм2) lk – неподдерживаемая длина между двумя корпусами f – фактор коррекции по монтажу
Плавающий – плавающий | λ=3.14 | f=9.7 |
Жесткий — плавающий | λ=3.927 | f=15.1 |
Жесткий — жесткий | λ=4.730 | f=21.9 |
Жесткий — свободный | λ=1.875 | f=3.4 |
Максимально допустимая скорость шарикового винта ограничена.
Для гаек SC/DC d0*nkzyl≤120 000
Для гаек CI, SK, SU/DU, SE d0*nkzyl≤90 000 , где d0 — центральный диаметр шпинделя,мм
Пожалуйста, свяжитесь с нашими инженерами, если требуемая скорость превышает DN, или если шариковый винт используется на более высоких скоростях.
Резьба и расчет
Кроме того, что существует несколько видов системы, имеется также несколько типов резьбы для гайки и винта. Если необходимо обеспечить наименьшее трение между деталями, то используется прямоугольный вид
Однако тут очень важно отметить, что технологичность этого типа соединения довольно низкая. Другими словами, нарезать такую резьбу на резьбофрезерном станке невозможно
Если сравнивать прочность прямоугольной и трапецеидальной резьбы, то первая значительно проигрывает
Из-за этого распространение и использование прямоугольной резьбы в винтовой передаче сильно ограничено
Если сравнивать прочность прямоугольной и трапецеидальной резьбы, то первая значительно проигрывает. Из-за этого распространение и использование прямоугольной резьбы в винтовой передаче сильно ограничено.
По этим причинам, основным типом, который используется для устройства передаточных винтов, стала трапецеидальная резьба. У того типа имеется три вида шага — мелкий, средний, крупный. Наибольшую популярность заслужила система со средним шагом.
Расчет винтовой передачи сводится к расчету передаточного соотношения. Формула выглядит следующим образом: U=C/L=pd/pK. С — это длина окружности, L — ход винта, p — шаг винта, K — число заходов винта.
Область применения
ШВП получили широкое распространение во многих отраслях промышленности: станкостроение, робототехника, сборочные линии и транспортные устройства, комплексные автоматизированные системы, деревообработка, автомобилестроение, медицинское оборудование, атомная энергетика, космическая и авиационная промышленность, военная техника, точные измерительные приборы и многое другое. Несколько примеров использования этих узлов:
- Приводы подач станков с ЧПУ. Первый серийно выпускаемый в СССР обрабатывающий центр ИР-500 имел 3 координаты обработки. Современные системы содержат значительно большее количество линейных приводов. Например, многошпиндельные автоматы продольного точения Tornos серии MULTI SWISS имеют 14 управляемых осей.
- Перемещение поршня-рейки рулевого механизма автомобилей (МАЗ, КАМАЗ, Газель).
- Вертикальное перемещение каретки производственного 3D-принтера VECTORUS серий iPro и sPro.
Функциональное предназначение и устройство
Вид профиля впадины винт-гайка: а) арочный контур б) радиусный контур
Цель рассматриваемого механизма состоит в том, чтобы преобразовать вращательное движение привода в прямолинейное перемещение рабочего объекта. Передача состоит из двух составных частей: ходового винта и гайки.
Винт изготавливается из высокопрочных сталей марок 8ХФ, 8ХФВД, ХВГ, подвергнутых индукционной закалке, или 20Х3МВФ с азотированием. Резьба выполнена в форме спиральной канавки полукруглого или треугольного сечения. В зависимости от условий работы винта профиль впадины может иметь несколько исполнений. Наиболее часто применяется арочный или радиусный контур.
Охватывающая деталь — гайка является составным узлом. Она имеет сложное устройство. Обычно представляет собой корпус, в котором расположены два вкладыша с такими же канавками, как и у ходового винта. Материал вкладных деталей: объемно закаливаемая сталь марки ХВГ, цементируемые стали 12ХН3А, 12Х2Н4А, 18ХГТ. Вставки устанавливают таким образом, чтобы после сборки обеспечить предварительный натяг в системе винт-гайка.
Внутри винтовых канавок размещаются закаленные стальные шарики, изготовленные из стали ШХ15, которые при работе передачи циркулируют по замкнутой траектории. Для этого внутри корпуса гайки имеются несколько обводных каналов, выполненных в виде трубок, соединяющих витки гайки. Длина их может быть различной, то есть шарики могут возвращаться через один, два витка, или в конце гайки. Наиболее распространенным является возврат на смежный виток (система DIN).
КАК РАБОТАЕТ ШВП?
Шарико-винтовая передача в сборе
Узел шарико-винтовой передачи состоит из винта и гайки, каждая из которых имеет соответствующие винтовые канавки, и шариков, которые катятся между этими канавками, обеспечивая единственный контакт между гайкой и винтом. При вращении винта или гайки шарики отклоняются дефлектором в систему возврата шариков гайки, и они проходят через систему возврата к противоположному концу шариковой гайки по непрерывному пути. Затем шарики выходят из системы возврата шариков в дорожки качения ШВП и гайки, чтобы рециркулировать в замкнутом контуре.
Узел шариковой гайки
Шариковая гайка определяет нагрузку и срок службы шарико-винтовой передачи. Отношение количества резьбы в контуре шариковой гайки к количеству резьбы шарико-винтовой передачи определяет, насколько раньше шариковая гайка достигнет усталостного разрушения (износа), чем шарико-винтовая передача.
Шариковые гайки изготавливаются с двумя типами систем возврата шара.
(а) Внешняя система возврата шарика. В системе возврата этого типа шар возвращается к противоположному концу контура через трубку возврата шара, которая выступает над внешним диаметром шариковой гайки.
Внешняя система возврата шарика
(b) Внутренняя система возврата шара (существует несколько вариантов системы возврата этого типа) Шарик возвращается через стенку гайки или вдоль нее, но ниже внешнего диаметра.
Пример (1): У некоторых производителей есть схемы с одним оборотом, в которых шарики вынуждены перевыливаться через гребень резьбы на винте системой возврата. Это известно как система внутреннего возврата с перекрестным дефлектором. В шаровых гайках с перекрестным дефлектором шарики совершают только один оборот вала, и цепь замыкается шаровым дефлектором (B) в гайке (C), позволяя шарику проходить между соседними канавками в точках ( А) и (D).
Схем с одним оборотом
Пример (2): Внутренняя система возврата шара.
Внутренняя система возврата шара в ШВП
В системе возврата этого типа шар возвращается к противоположному концу контура через стенку гайки или вдоль нее, но ниже внешнего диаметра через V-образный колпачок.
Пример (3): тангенциальная система внутреннего возврата шара.
Тангенциальная система внутреннего возврата шара в ШВП
Для работы на высоких скоростях или высоких нагрузках используется система тангенциального шарикового возврата. Это обеспечивает очень плавный поток шариков на любой скорости в ограниченном пространстве. Это очень прочная система возврата шара, которая также используется в решениях с высокими нагрузками.
D. Узел вращающейся шариковой гайки
Когда длинная шарико-винтовая передача вращается с высокой скоростью, она может начать вибрировать, как только коэффициент гибкости достигнет естественной гармоники для этого размера вала. Это называется критической скоростью и может сильно сказаться на сроке службы ШВП. Безопасная рабочая скорость не должна превышать 80% критической скорости винта.
Тем не менее, для некоторых задач требуются валы большей длины и высокие скорости. Вот где нужна вращающаяся шариковая гайка. Как правило для этого изготавливаются специальные системы ШВП.
Все о ШВП
Шариково-винтовая передача – разновидность линейного привода, трансформирующего вращательное движение в поступательное, которая обладает отличительной особенностью – крайне малым трением.
Вал (обычно стальной – из высокоуглеродистых видов стали) со специфической формы беговыми дорожками на поверхности выполняет роль высокоточного приводного винта, взаимодействующего с гайкой, но не напрямую, через трение скольжения, как в обычных передачах винт-гайка, а посредством шариков, через трение качения. Это обуславливает это высокие перегрузочные характеристики шарико-винтовой передачи и очень высокий КПД. Винт и гайка производятся в паре, подогнанными, с очень жесткими допусками, и могут быть использованы в оборудовании, где требуется очень высокая точность. Шариковая гайка обычно чуть более крупная, чем гайка скольжения – из-за расположенных в ней каналов рециркуляции шариков. Однако, это практически единственный момент, в котором ШВП уступает винтовым передачам трения скольжения.
Сфера применения шарико-винтовых пар
ШВП часто применяется в авиастроении и ракетостроении для перемещения рулевых поверхностей, а также в автомобилях, чтобы приводить в движение рулевую рейку от электромотора рулевого управления. Широчайший спектр приложений ШВП существует в прецизионном машиностроении, таком, как станки с ЧПУ, роботы, сборочные линии, установщики компонентов, а также – в механических прессах, термопластавтоматах и др.
История ШВП
Исторически, первый точный шариковый винт был произведен из достаточно малой точности обычного винта, на который была установлена конструкция из нескольких гаек, натянутых пружиной, а затем притерта по всей длине винта. Путем перераспределения гаек и смены направления натяга, погрешности шага винта и гайки могли быть усреднены. Затем, полученный шаг пары, определенный с высокой повторяемостью замерялся и фиксировался в качестве паспортного. Схожий процесс и в настоящее время периодически используется для производства ШВП.
Применение ШВП
Для того, чтобы шариковая пара отслужила весь свой расчетный срок с сохранением всех, в т.ч
точностных, параметров, необходимо уделить большое внимание чистоте и защите рабочего пространства, избегать попадания на пару пыли, стружки и прочих абразивных частиц. Обычно это решается путем установки гофрозащиты на пару, полимерной, резиновой или кожаной, что исключает попадание посторонних частиц в рабочую область. Другой метод состоит в использовании компрессора – подачи фильтрованного воздуха под давлением на винт, установленный открыто
Другой метод состоит в использовании компрессора – подачи фильтрованного воздуха под давлением на винт, установленный открыто
Шарико-винтовые передачи благодаря использованию трения качения могут иметь определенный преднатяг, который убирает люфт передачи – определенный “зазор” между вращательным и поступательным движением, который имеет место при смене направления вращения
Другой метод состоит в использовании компрессора – подачи фильтрованного воздуха под давлением на винт, установленный открыто. Шарико-винтовые передачи благодаря использованию трения качения могут иметь определенный преднатяг, который убирает люфт передачи – определенный “зазор” между вращательным и поступательным движением, который имеет место при смене направления вращения
Устранить люфт особенно важно в системах с программным управлением, поэтому ШВП с преднатягом используются в станках с ЧПУ особенно часто
Недостатки шарико-винтовых передач
В зависимости от угла подъема беговых дорожек, ШВП могут быть подвержены обратной передаче – малое трение приводит к тому, что гайка не блокируется, а передает линейное усилие в крутящий момент. ШВП обычно нежелательно использовать на ручных подачах. Высокая стоимость ШВП также фактор, который зачастую склоняет выбор машиностроителей в пользу более бюджетных передач.
Преимущества шарико-винтовых передач
Низкий коэффициент трения ШВП обуславливает низкую диссипацию и высокий КПД передачи – намного выше, чем у любых других аналогов. КПД самых распространенных шариковых пар может превышать 90% по сравнению с максимальными 50% для метрических и трапецеидальных ходовых винтов. Практические отсутствующее скольжение значительно увеличивает срок службы ШВП, что снижает простой оборудования при ремонте, замене и смазке частей. Все это в сочетании с некоторыми другими преимуществами, такими как более высокой достигаемой скоростью, сниженными требованиями к мощности электропривода винта, может быть существенным аргументом в пользу ШВП в противовес его высокой стоимости.
Установка ШВП на станок с числовым программным управлением
Станки с блоком числового программного управления получили очень большое распространение. Выбор проходит на момент разбора конструкции и проектирования. Перед непосредственной установкой проходит следующий расчет:
- Нужное усилие, передающееся на винт. Главные узлы станка могут воспринимать разную нагрузку. Если винт не будет рассчитывается на это, другими словами вероятность деформации, а еще срезания витков и возникновения иных недостатков. Собственно поэтому проводятся подробные расчеты для определения того, какую нагрузку должна воспринимать шаприко-винтовая передача.
- Величина хода стола. Во многих случаях рассматриваемая шарико-винтовая передача ставится для обеспечения продольного или поперечного хода стола фрезерного оборудования, а еще иных узлов.
- Устанавливается наиболее подходит длина винта. Как раньше было отмечено, критерий более 2-х метров будет причиной искревления и возникновения иных недостатков при долгой эксплуатации устройства.
- Требуемая точность может зависеть от довольно различных критериев. Для станков ЧПУ требуется механизм с очень большим коэффициентом точности, так как она уменьшается от привода к зоне обработки.
- Определяются требуемые особенности конструкции гайки. В данном случае устанавливается цена устройства и некоторые прочие моменты.
- Уточняется тот фактор, должен ли свободный конец фиксироваться на момент эксплуатации.
- Устанавливается то, как проходит крепление шарико-винтовой передачи к корпусу. Исключительно при большой жесткости конструкции обеспечивается требуемая точность позиционирования всех компонентов конструкции.
Выполнить установку рассматриваемого устройства может исключительно мастер, обладающий подобающей подготовкой
Это связано с важностью точностью позиционирования шарико-винтовой передачи
Напоследок напомним, что в продаже встречается просто большое количество способов выполнения такого приспособления. Не все они используются из-за разного критерия точности позиционирования важных элементов.
Если вы нашли погрешность, пожалуйста, выдилите фрагмент текста и нажмите Ctrl+Enter.
Возможности шприцевания и систем смазок
Шприцевание – это обработка консистентными (густыми) смазками при помощи рычажно-плунжерного шприца. Спецсмазка для ШВП, линейных подшипников – Mobilux EP 2 реализуется в удобной расфасовке – в шприцах по 20 г. В некоторых случаях удобен большой медицинский шприц с капиллярной трубкой.
На различных предприятиях сформированы различные подходы. Графитовой и молибденовой смазкой одна фирма прессует раз в месяц. А в ежедневном уходе используют МС-1000, смазку для подшипников DEPO. Доступные варианты – Mobil-XHP222 (его продажа – в автомагазинах), LGHP 2 и NLGI2.
Высококачественным маслом для обработки направляющих Mobil Vactra Oil (с классом вязкости ISO 32),смазывают и узлы станков. Оно устойчиво к окислению, имеет хорошую фильтруемость, поддерживая устойчивый поток жидкости в системе. Масла серии Mobil используют при контакте с чугуном, сталью, в сочетаниях неметаллических материалов.
Существует специальное устройство – система смазки станка чпу, которая предназначена для принудительной централизованной подачи смазки в ШВП или направляющие. Каждый смазанный узел имеет длительный срок эксплуатации.
Реализуются готовые комплекты для систем подачи смазки – ZLPM1-S1, ZLPM2-S1. В них рекомендуют использовать жидкое масло, имеющее вязкость 30-46. Со станком, который смазывается при помощи систем – можно браться за выполнение любых задач.
Определения
ШВП для ЧПУ относится к дорогостоящим узлам. Здесь экономить не рекомендуется, запас прочности необходим в троекратном размере. Неопытность оператора обернется длительным и затратным ремонтом. Рынок предлагает огромное количество изделий, разобраться в которых непросто начинающему специалисту.
Не каждое ШВП для ЧПУ подходит только по конструктивным размерам. Для выбора подшипниковой пары следует учитывать параметры прочности материала, коэффициента полезного действия, плавности хода, максимальной нагрузки, уровень теплопотерь при интенсивной работе. Для выполнения заданных требований выбираются вид и назначение ШВП.
ШВП для ЧПУ бывают катаными, шлифованными, для больших и малых нагрузок, с цилиндрической гайкой. Также на выбор влияет расположение подшипниковой пары: горизонтальное либо вертикальное. В последнем случае учитывается нагрузка на опорный подшипник. Для снижения этой силы в станках предусмотрено наклонное расположение суппорта, но в некоторых моделях вертикальность заложена требованиями технологических операций.
Точность ШВП
Во многих случаях шарико-винтовая передача ставится из-за причины большой точности позиционирования двоих компонентов. Рабочий принцип отличается следующими характерностями:
- Во многих случаях погрешность составляет 1-3 микрона на 300 мм хода. По мимо этого, можно повстречать шарико-винтовые устройства с более большой точностью позиционирования индивидуальных элементов.
- Заготовка для получения винта выходит при использовании технологии обработки механическим способом. Примером можно назвать применение токарного станка ЧПУ, так как он дает возможность получить размеры очень точно.
- После получения необходимой формы проходит закалка и шлифовка поверхности. Первый тех. процесс дает возможность значительно повысить твердость поверхности, второй достичь большой точности размеров.
Принципиальным моментом назовем то, что температурная обработка оказывается основой важного изменения главных качеств материала. Собственно поэтому завершальная обработка во многих случаях представлена шлифованием
Довольно обширное распространение сегодня обрела технология Hard-whirling. Это технология металлообработки учитывает самый маленький нагрев заготовки, благодаря чему значительно увеличивается точность обработки. Во многих случаях точность обработки составляет 250 Нм на один сантиметр.
Также может использоваться технология фрезеровки и шлифовки на сверхточном оборудовании. Подобное оборудование применяется при получении зеркал и линз. Во многих случаях заготовка предоставлена инварными сплавами, благодаря чему значительно уменьшается погрешность при изготовлении.
Испытания на соответствие техническим условиям 3408-3
Измерение тормозного момента на нагружающем Δ Tp
Тормозной момент через нагружающий Tpr
Момент шарикового винта , который требуется чтобы повернуть для поворота шариковой гайки против винта (или наоборот) без внешней нагрузки
Возможные моменты трения из-за уплотняющего элемента не берутся во внимание.. Совокупный тормозной момент Tt. Момент который требуется чтобы повернуть шариковую гайку против шарикового винта (или наоборот) без внешней нагрузки, включая момент трения уплотняющих элементов
Момент который требуется чтобы повернуть шариковую гайку против шарикового винта (или наоборот) без внешней нагрузки, включая момент трения уплотняющих элементов
Момент который требуется чтобы повернуть шариковую гайку против шарикового винта (или наоборот) без внешней нагрузки, включая момент трения уплотняющих элементов
Совокупный тормозной момент Tt
Момент который требуется чтобы повернуть шариковую гайку против шарикового винта (или наоборот) без внешней нагрузки, включая момент трения уплотняющих элементов
Вариация момента
Значение колебаний предварительно определенного тормозного момента под предварительной нагрузкой. Положительное или отрицательное значение относительно среднего момента
Метод измерений
Предварительный натяг генерирует динамический момент трения между гайкой и резьбой в шарико-винтовой паре. Это измеряется путем перемещения шпинделя с резьбой на постоянной скорости, в то время как гайка удерживается специальным блокирующим устройством. Измеренная сила F используется для подсчета тормозного момента шпинделя с резьбой.
Средний крутящий момент Tp0 | Общая длина | |||||||||||||
До 4000 | От 4000 до 10000 | |||||||||||||
40 | (Длина резьбовой части/диаметр винта)≤40 | – | ||||||||||||
ΔTpp (в % до Tp0)класс точности | ΔTpp (в % до Tp0)класс точности | ΔTpp (в % до Tp0)класс точности | ||||||||||||
от | до | 1 | 3 | 5 | 7 | 1 | 3 | 5 | 7 | 3 | 5 | 7 | ||
0.2 | 0.4 | ± 30 % | ± 35 % | ± 40 % | ± 50 % | – | ± 40 % | ± 40 % | ± 50 % | ± 60 % | – | – | – | – |
0.4 | 0.6 | ± 25 % | ± 30 % | ± 35 % | ± 40 % | – | ± 35 % | ± 35 % | ± 40 % | ± 45 % | – | – | – | – |
0.6 | 1.0 | ± 20 % | ± 25 % | ± 30 % | ± 35 % | ± 40 % | ± 30 % | ± 30 % | ± 35 % | ± 40 % | ± 45 % | ± 40 % | ± 45 % | ± 50 % |
1.0 | 2.5 | ± 15 % | ± 20 % | ± 25 % | ± 30 % | ± 35 % | ± 25 % | ± 25 % | ± 30 % | ± 35 % | ± 40 % | ± 35 % | ± 40 % | ± 45 % |
2.5 | 6.3 | ± 10 % | ± 15 % | ± 20 % | ± 25 % | ± 30 % | ± 20 % | ± 20 % | ± 25 % | ± 30 % | ± 35 % | ± 30 % | ± 35 % | ± 40 % |
6.3 | 10 | – | – | ± 15 % | ± 20 % | ± 30 % | – | – | ± 20 % | ± 25 % | ± 35 % | ± 25 % | ± 30 % | ± 35 % |