Пирометаллургия — определение и способы получения металлов

Природные соединения с содержанием меди

Чистая медь, которую собой представляют ее самородки, представлена в природе в очень незначительных количествах. В основном медь в природе присутствует в виде различных соединений, наиболее распространенными из которых являются следующие.

  • Борнит – минерал, получивший свое название в честь ученого из Чехии И. Борна. Это сульфидная руда, химический состав которой характеризует ее формула – Cu5FeS4. Борнит имеет и другие названия: пестрый колчедан, медный пурпур. В природе эта руда представлена в двух полиморфных видах: низкотемпературной тетрагонально-скаленоэдрической (температура меньше 228 градусов) и высокотемпературной кубически-гексаоктаэдрической (больше 228 градусов). Данный минерал может иметь различные виды и в зависимости от своего происхождения. Так, экзогенный борнит – это вторичный ранний сульфид, который очень неустойчив и легко разрушается при выветривании. Второй тип – эндогенный борнит – характеризуется непостоянством химического состава, в котором могут присутствовать халькозин, галенит, сфалерит, пирит и халькопирит. Теоретически минералы данных видов могут включать в свой состав от 25,5% серы, более 11,2% железа и свыше 63,3% меди, но на практике такое содержание этих элементов никогда не выдерживается.
  • Халькопирит – минерал, химический состав которого характеризуется формулой CuFeS2. Халькопирит, имеющий гидротермальное происхождение, раньше называли медным колчеданом. Наряду со сфалеритом и галенитом он входит в категорию полиметаллических руд. Данный минерал, который, кроме меди, содержит в своем составе железо и серу, формируется в результате протекания метаморфических процессов и может присутствовать в двух типах медных руд: контактово-метасоматического вида (скарны) и горные метасоматические (грейзены).
  • Халькозин – сульфидная руда, химический состав которой характеризуется формулой Cu2S. Такая руда содержит в своем составе значительное количество меди (79,8%) и серу (20,2%). Эту руду часто называют «медным блеском», что объясняется тем, что ее поверхность выглядит как отблескивающий металл, обладающий различными оттенками – от свинцово-серого до совершенно черного. В медесодержащих рудах халькозин выглядит как плотные или мелкозернистые включения.


Халькопирит

В природе встречаются и более редкие минералы, которые содержат в своем составе медь.

  • Куприт (Cu2O), относящийся к минералам оксидной группы, часто можно встретить в местах, где есть малахит и самородная медь.
  • Ковеллин – сульфидная порода, сформированная метасоматическим путем. Впервые этот минерал, содержание меди в котором составляет 66,5%, был обнаружен в начале позапрошлого столетия в окрестностях Везувия. Сейчас ковеллин активно добывают на месторождениях в таких странах, как США, Сербия, Италия, Чили.
  • Малахит – минерал, хорошо известный всем как поделочный камень. Наверняка все видели изделия из этого красивейшего минерала на фото или даже являются их обладателями. Малахит, который в России очень популярен, – это углекислая медная зелень или дигидрококскарбонат меди, относящийся к категории полиметаллических медесодержащих руд. Найденный малахит свидетельствует о том, что рядом есть месторождения других минералов, содержащих медь. В нашей стране крупное месторождение этого минерала находится в районе Нижнего Тагила, раньше его добывали и на Урале, но сейчас его запасы там значительно истощены и не разрабатываются.
  • Азурит – минерал, который из-за своего синего цвета также называют «медной лазурью». Он характеризуется твердостью 3,5–4 единицы, основные его месторождения разрабатываются в Марокко, Намибии, Конго, Англии, Австралии, Франции и Греции. Азурит часто сращивается с малахитом и залегает в тех местах, где поблизости расположены месторождения медесодержащих руд сульфидного типа.


Малахит

Особенности медных руд

Медьсодержащие руды характеризуются как многоэлементные. Наиболее часто встречающиеся соединения бывают с:

  • железом;
  • серой;
  • медью.

В незначительной концентрации могут присутствовать:

  • никель;
  • золото;
  • платина;
  • серебро.

Месторождения во всем мире имеют примерно одинаковый набор химических элементов в составе руды, отличаются лишь их процентным соотношением. Чтобы получить чистый металл, используют различные промышленные способы. Почти 90% металлургических предприятий используют одинаковый метод производства чистой меди – пирометаллургический.

Один из самых больших карьеров по добыче руди приносит 17 миллионов тонн меди в год

Схема этого процесса позволяет также получать металл из вторичного сырья, что для промышленности является существенным плюсом. Поскольку месторождения относятся к группе не восполняемых – запасы с каждым годом уменьшаются, руды беднеют, а их добыча и производство становится дорогим. Это, в конечном счете, влияет на цену металла на международном рынке. Кроме пирометаллургического метода, существуют еще способы:

  • гидрометаллургический;
  • метод огневого рафинирования.

Способы производства

Для производства цветных металлов и сплавов применяется разнообразные методы, основанные на химических свойствах основы, из которой будет получен металл или сплав и реагента.

Пирометаллургия – метод получения цветного металла путем проведения избирательной плавки, которая может быть окислительной или восстановительной. Источником тепла и главным реагентом чаще всего выступает присутствующая в руде сера.

Электролиз – метод, основанный на химической реакции электролиза. Применяется катод и анод. На катоде, которым выступает ванна из огнеупорного материала, происходит осаждение ионов металла в результате диссоциации. Реакция, в отличие от традиционной, описанной в учебниках химии, проводится не в водной среде, а в расплаве. Это обуславливается необходимостью избежать осаждения на катоде ионов водорода, что не позволяет выделять чистый металл.

Металлотермия – метод восстановления хлоридов или оксидов металла под воздействием другого вещества. Преимущественно технология применяется при производстве титана. Параллельно добывается магний, поскольку хлорид магния выступает побочным продуктом.

Сплавление – этот способ заключается в прямом смешивании двух металлов. Дополнительно в жидком состоянии поставляется шихта или легирующий материал. Этот способ относится к наиболее производительным, менее затратным и позволяет получать незагрязненные металлы., имеющие заданные физико-химические свойства.

Литье металла

Общие способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным  образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде  встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

      Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд — задача металлургии.

    Металлургия — это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

М n+ + ne−→M

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

В соответствии с этим существуют следующие способы получения металлов:

• пирометаллургический;

• гидрометаллургический;

• электрометаллургический.

 Пирометаллургия

     Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.

Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O

прокаливанием с углем (коксом):

Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:

Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:

Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).

В качестве восстановителя можно применять водород или активные металлы:

1)      МоO3 + ЗН2 = Мо + ЗН2O (водородотермия)

К достоинствам этого метода относится получение очень чистого металла.

2)      TiO2+ 2Мg = Тi + 2МgO (магнийтермия)

ЗМnO2 + 4Аl = ЗМn + 2Аl2O3 (алюминотермия)

Чаще всего в металлотермии используют алюминий, теплота образования оксида

https://youtube.com/watch?v=_-nVROAFWAY

которого очень велика  (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций  восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:

Q= Σ Q1 — Σ Q 2 ,

где  Q1— теплота образования продукта, Q2 -теплота образования исходного вещества.

Доменный  процесс (производство чугуна):C + O2 = CO2, CO2 + C 2CO3Fe2O3 + CO = 2(Fe2Fe32)O4+ CO2(Fe2Fe32)O4+ CO= 3FeO + CO2FeO + CO= Fe + CO2(чугун содержит до 6,67% углерода в виде зерен графита и цементита Fe3C);

Выплавка стали (0,2-2,06% углерода) проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева.

Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов.

При этом оксиды либо улавливаются в виде отходящих газов (CO2, SO2), либо связываются в легко отделяемый шлак – смесь Ca3(PO4)2 и CaSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

СuО + Н2SО4 =  СuSO4 + Н2

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

СuSO4. + Fе = Сu + FеSO4

Таким образом, получают серебро, цинк, молибден, золото, уран.

Электрометаллургия

Электрометаллургия — восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.

Примеры:а) NaCl (электролиз расплава) → 2Na + Cl2

Пирометаллургия

Пи́рометаллу́ргия — совокупность металлургических процессов, протекающих при высоких температурах. Это отрасль металлургии, связанная с получением и очищением металлов и металлических сплавов при высоких температурах, в отличие от гидрометаллургии, к которой относятся низкотемпературные процессы.

Описание

Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений.

В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.

Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, , плавка в конвертерах, дуговых и индукционных печах.Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.

В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия.

Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах.

На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия.

В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).

Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и . Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.

Основные процессы

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком.

Пирометаллургический метод

Пирометаллургический метод – восстановление металлов из руд при повышенной температуре с помощью угля, оксида углерода ( II), алюминия или водорода.  

Пирометаллургический метод – шлам расплавляется в печи и расплав подвергается продувке воздухом; при этом все металлы, кроме Ag и Аи, переходят в шлак, а окислы селена теллура улетучиваются и улавливаются.  

Пирометаллургический метод – восстановление металлов из руд при повышенной температуре с помощью угля, оксида углерода ( II), алюминия или водо рода.  

Пирометаллургический метод – восстановление металла из руд при повышенной температуре с помощью угля, окиси углерода, алюминия или водорода.  

Кроме пирометаллургических методов, при добывании металлов применяются гидро металлургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора.  

Кроме пирометаллургических методов, при добывании металлов применяются гидрометаллургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора.  

Кроме пирометаллургических методов, при добывании металлов применяются гид ро металлургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора.  

Кроме пирометаллургических методов, при добывании металлов применяются гидрометаллургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора.  

Кроме пирометаллургических методов, при добывании металлов применяются гидрометаллургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора. Гидрометаллургическим путем получают, например, золото ( см. разд.  

Кроме пирометаллургических методов, при добывании металлов применяются гидрометаллургические методы. Они представляют собою извлечение металлов из руд в виде их соединений водными растворами различных реагентов с последующим выделением металла из раствора.  

Кроме пирометаллургических методов, при добывании метал-эв применяются гидрометаллургические методы. Они редставляют собою извлечение металлов из руд в виде их соеди-ний водными растворами различных реагентов с последующим делением металла из раствора.  

Получаемая пирометаллургическим методом медь обычно содержит 95 – 98 % Си. Для получения меди высокой степени чистоты проводится электролитическое рафинирование электролизом CuSO4 с медным анодом. При этом сопутствующие меди благородные металлы, селен, теллур и другие ценные примеси концентрируются в анодном шламе, откуда их извлекают специальной переработкой.  

По устаревшему пирометаллургическому методу частичный. Из сернистого газа получают серную кислоту.  

Медь, получаемая пирометаллургическим методом, содержит около 1 % примесей посторонних металлов, в том числе золото и серебро. Для получения чистой меди ( содержание примесей не более 0 05 %) и попутного извлечения благородных металлов пирометал-лургическую медь подвергают электролитическому рафинированию.  

Свойство меди легко соединяться с серой используется в пирометаллургическом методе получения меди, при очистке свинца от меди, в аналитической химии меди для отделения ее от сопутствующих элементов.  

Способы получения и добычи

Добыча и обработка проводится на природных рудниках. Потом расходное сырье доставляется до литейного предприятия, где происходит его переработка в конечный материал. Способы получения:

  1. Порошковый. При изготовлении сплавов используются порошки — смесь основных компонентов сплава по ГОСТу. С помощью специального оборудования порошок спрессовывается, ему придают определенную форму. После этого расходный материал спекают в промышленной печи.
  2. Литейный способ. Все компоненты будущего сплава сначала расплавляются, а потом перемешиваются. Смесь должна застыть.

Природные источники

Самое большое количество металлов содержится в земной коре. Их соединения можно найти в разных продуктах питания, воде, воздухе, химических веществах.

Природные соединения

Природные соединения:

  • сульфиды — киноварь, цинковая обманка, серный колчедан;
  • хлориды — каменная соль, сильвинит;
  • сульфаты — гипс, глауберова соль;
  • карбонаты — магнезит, доломит, известняк, мрамор, мел;
  • оксиды — красный, магнитный, бурый железняк;
  • нитраты — чилийская селитра.

Добыча руды (Фото: Instagram / dikomnw)

Способы добычи

Существует два способа добычи металлических руд:

  1. Открытый. Подразумевает разработку огромного карьера, который углубляется к центру. С его глубины на карьерных самосвалах руда вывозится наверх, где проходит дальнейшую переработку. Средняя глубина карьеров — 300 метров. Для разработки применяются крупные экскаваторы, земснаряды, карьерная техника. Карьерный метод добычи металлической руды применяется только, если после проверки почвы в ней было обнаружено более 57% руды. Главный недостаток карьера — малая глубина разработки.
  2. Закрытый. Подразумевает разработку шахт, которые могут уходить вниз на глубину нескольких сотен метров. Применяется, когда на поверхности после проверки было обнаружено менее 57% полезных руд. Внешне шахта напоминает колодец, который разветвляется в стороны на большой глубине. Главный недостаток — опасность для рабочих (частые обвалы, взрывы газов, большая вредность для здоровья).

Один из современных способов добычи металлической руды — СГД. Представляет собой гидромеханических метод добычи руды, который подразумевает создание глубокой шахты, снабженной трубопроводом с гидромонитором. Струя воды под большим напором подается в трубопровод. С ее помощью откалываются горные породы, которые всплывают наверх шахты. Эффективность данного способа небольшая, но он полностью безопасен для людей.

Шахта (Фото: Instagram / subcities)

Богатые рудники

Богатые железные рудники:

  1. Бакчарское железорудное месторождение.
  2. Абаканское железорудное месторождение.
  3. Абагасское железорудное месторождение.
  4. Курская магнитная аномалия.

Самые богатые месторождения алюминиевых руд находятся в

  • Венгрии;
  • Франции;
  • Индии;
  • Южной Африке;
  • Казахстане;
  • России;
  • Югославии;
  • Кольском полуострове;
  • Сибири.

Богатые месторождения медной руды расположены в США, Швеции, Канаде, России, Финляндии, ЮАР.

Медная руда (Фото: Instagram / alex_tango1910)

Гидрометаллургия

Методика, которая основана на проведении химических реакциях. Они протекают в различных растворах. Наиболее распространенные материалы, которые получаются подобным способом — никель, цинк, золото.

Пирометаллургия

Из расходного сырья металл извлекается под воздействием высоких температур. Для проведения данного способа применяются печи, плавильни. Этим методом получают чугун, свинец, сталь, никель, медь, хром

Для изготовления активных металлов важно использовать восстановители

Электрометаллургия

Подразумевает обработку расходного сырья электрическим током. Сила тока изменяется зависимо от преобладающих в составе руды компонентов. С помощью электрометаллургии получаются разные металлы — щелочноземельные, щелочные. Основные из них — алюминий, магний.

  1. С помощью металлов. Этот процесс называют металлотермией.
  2. С помощью водорода. С помощью этой методики можно получить материал с наименьшим количеством посторонних вкраплений.
  3. С помощью углерода или оксида углерода. Эта методика называется карботермией.

Понятие о металлургии

Металлургия — получение металлов из руд — один из древнейших видов человеческой деятельности. Еще во втором тысячелетии до н. э. в Египте умели выплавлять железо из железной руды. Так называемый железный век пришел на смену бронзовому, тот, в свою очередь, наступил после каменного.

Получают металлы из рудных полезных ископаемых. Например, халькопирит или медный колчедан — сырье для производства железа, меди и серы (Рис. 1). Химическая формула минерала CuFeS2. Металлы в составе других руд находятся в виде оксидов или солей неорганических кислот, химически связанных катионов.

Рис. 1. Халькопирит

Суть металлургического процесса заключается в восстановлении положительных ионов до свободных атомов металла. Используют в качестве источников электронов углерод и его соединения, водород, металлы. В процессе восстановления катионы получают недостающие электроны. Происходит восстановление электронных оболочек металла. Схема процесса:

Ме+n + ne- → Me, где

  • Ме+n — металл в окисленной форме;
  • +n — степень окисления;
  • ne- — количество присоединяемых электронов;
  • Ме — металл в восстановленной форме.

Жарка

Основная статья: Обжиг (металлургия)

Обжиг состоит из термических реакций газ-твердое тело, которые могут включать окисление, восстановление, хлорирование, сульфатирование и пирогидролиз.

Самый распространенный пример обжига — окисление сульфидных руд металлов. Сульфид металла нагревают в присутствии воздуха до температуры, которая позволяет кислороду воздуха реагировать с сульфидом с образованием газообразного диоксида серы и твердого оксида металла. Твердый продукт от обжарки часто называют «кальцинировать

«. При окислительном обжиге, если температура и газовые условия таковы, что исходное сульфидное сырье полностью окисляется, процесс известен как»мертвая обжарка «. Иногда, как в случае предварительной обработки сырья отражательной или электроплавильной печи, процесс обжига выполняется с количеством кислорода меньше, чем требуется для полного окисления сырья. В этом случае процесс называется«частичное обжаривание «потому что сера удаляется только частично. Наконец, если температура и газовые условия регулируются так, что сульфиды в сырье реагируют с образованием сульфатов металлов вместо оксидов металлов, процесс известен как»сульфатионная обжарка «. Иногда температура и газовые условия могут поддерживаться таким образом, что смешанное сульфидное сырье (например, сырье, содержащее как сульфид меди, так и сульфид железа) реагирует так, что один металл образует сульфат, а другой образует оксид, процесс известен как «выборочная обжарка » или же «селективное сульфатирование «.

Оборудование

Для получения и обработки применяется разное оборудование:

  1. Для термической обработки — печи, плавильни, горны.
  2. Для изменения шероховатостей поверхностей — шлифовальные станки, пескоструи.
  3. Для создания углублений, обработки кромок, торцов — долбежные, сверлильные, фрезеровальные станки.
  4. Для придания простой или сложной цилиндрической формы — токарные станки.
  5. Для разрезания заготовок — пилы, лазерные или гидроабразивные резаки.

Современное оборудование оснащается автоматическими системами управления, что ускоряет производство, минимизирует физические затраты со стороны человека.

Самодельный горн (Фото: Instagram / vetal7070)

Пирометаллургия

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), водород, метан.

Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В основе пирометаллургии лежат реакции восстановления металлов из их окислов.

Пирометаллургия занимает ведущее место в металлургической промышленности. Суть метода заключается § получении металлов из руд с помощью восстановителей при высоких температурах.

Пирометаллургией называется способ получения металла из руд, основанный на их нагревании, например, в печах, продуваемых воздухом. Этот способ используется в двух из трех восстановительных процессов, приведенных в таблице. Нагрев при этом происходит либо на воздухе ( обжиг), либо в присутствии восстановителя. Обычно используются уголь ( кокс) или моноксид углерода, поскольку они недороги и доступны. Если оба этих вещества не годятся, в качестве восстановителя можно использовать более активный металл. Пирометаллургия – наиболее важный и старейший способ получения металлов из руд.

В пирометаллургии материалом, с помощью к-рого ведется В.

Если пирометаллургия основана на химических процессах, протекающих в расплаве сырья при высоких температурах, и для разделения его компонентов используется различное их сродство к шлакообразующим, кислороду или к сере, то гидрометаллургия основана на извлечении соединений металлов из: руд и концентратов водными растворами различных реагентов при низких температурах. При селективном действии реагентов в раствор переходят главным образом полезные компоненты; пустые породы практически не растворяются в реагентах. Этим гидрометаллургия выгодно отличается от пирометаллургии, при которой переплавляется вся масса руды

Такое отличие особенно важно при переработке бедных руд, содержание полезного компонента в которых мало.

В пирометаллургии используют также способность сульфидов металлов восстанавливать их оксиды, что приводит к самовосстановлению металлов из смеси их соединений. Это происходит при получении меди и свинца из их сульфидных руд.

В пирометаллургии и электротермии также широко применяют трубчатые конденсаторы ( иногда состоящие из одной трубы), однако паро-газовую смесь подают внутрь труб. Благодаря этому для них более характерным является ламинарное движение паро-газовой смеси, для которого схема Прандтля непригодна.

Если пирометаллургия основана на химических процессах, протекающих в расплаве сырья при высоких температурах, и для разделения его компонентов используется различное их сродство к шлакообразующим, кислороду или к сере, то гидрометаллургия основана на извлечении соединений металлов из руд и концентратов водными растворами различных реагентов при низких температурах. При селективном действии реагентов в раствор переходят главным образом полезные компоненты; пустые породы практически не растворяются в реагентах. Этим гидрометаллургия выгодно отличается от пирометаллургии, при которой переплавляется вся масса руды

Такое отличие особенно важно при переработке бедных руд, содержание полезного компонента в которых мало.

В пирометаллургии велики расходы на топливо, электроэнергию и огнеупорные материалы.

Применяют пирометаллургии, ( см. Рафинирующие переплавы, хим. и электролитич.

К пирометаллургии относятся методы восстановления металлов из руд при повышенной температуре.

В пирометаллургии материалом, с помощью к-рого ведется В.

В пирометаллургии цинка для окисления сульфидных концентратов применяют агломерирующий обжиг. Одностадийный агломерирующий обжиг обеспечивает необходимую десульфуризацию только при шихте, содержащей около 80 % оборотного агломерата. Признано более целесообразным обжиг перед дистилляцией проводить в две стадии.

В пирометаллургии цинка огнеупоры применяют для агломерирующего обжига цинковых концентратов на агломерационных машинах, для печей дистилляции цинка в горизонтальных ретортах, для вертикальных реторт, в установках КИВЦЭТ, при электротермическом способе получения цинка в дуговых электропечах, в футеровке шахтных печей для восстановительной плавки цинкового агломерата, в вельц-печах для доизвлечения цинка из раймовки, в отражательных печах и ректификационных колоннах для рафинирования цинка.

Свойства руд

Отвечать на вопрос: какими свойствами обладает железная руда, не совсем просто. Хотя бы потому, что перечень свойств зависит от процента данного металла в руде и количества посторонних примесей. К примеру, красный железняк, содержащий гематит (Fe2O3), содержит в себе целых 70% железа от общего количества.

В общем и целом, кстати, целесообразной добычей железа считается только та, где в рудах содержится от 40% железа и выше. Данная цифра действительно дает понять, что железо распространено в окружающем мире многократно больше других элементов. К примеру, для того же урана, содержание его в руде в количестве 2% считалось бы небывалой удачей…

Но вернемся к нашему красному железняку. Давая характеристику железной руде, можно сказать, что красный железняк представляет собой диапазон от порошкового вещества до плотного.

Лимонит (он же – бурый железняк), также является рудой железа, однако она представляет собой пористую и рыхлую породу, содержащую весомые доли фосфора и марганца. Пустой породой у него часто выступает глина. В силу чего, кстати, довольно легко поддается извлечению железа. Потому из него часто делают чугун.

Пирометаллургические методы

Основными методами (способам) такого извлечения металлов является восстановление. К ним относятся:

  • металлотермия;
  • силикатотермия;
  • восстановление различными элементами или химическими соединениями.

Любой пирометаллургический метод предполагает высокотемпературное протекание процесса. Первый из перечисленных пирометаллургических способов предполагает ускорение реакции восстановления за счёт свойств более активных металлов. Например, алюминия, магния, натрия.

Второй метод пирометаллургии – это восстановление необходимого элемента с помощью кремния. Остальные способы реализовываются за счёт применения различных химических элементов (например, водорода,углерода) или соединениями (например, гидритами различных металлов, монооксидом углерода).

Применение углерода и его монооксида в пирометаллургии считается целесообразным, когда отсутствуют высокие требования к чистоте получаемого материала и не допускаются высокие затраты на проведение реакции.

Обычно углеродом восстанавливают следующие элементы:

  • железо из двух его соединений с кислородом: оксид железа (III) и четырёхмерного оксида железа (магнетита);
  • олова из касситерита;
  • меди из куприта.

Методы с применением углерода объединяются одним термином – карбометрия. Кроме перечисленных технологий к современной пирометаллургии относят так называемую хлорную металлургию. Она обеспечивает выделение материала при хлорировании сырья с добавлением, так называемого восстановителя. На завершающем этапе производят переработку полученных хлоридов. Этот метод обладает определёнными преимуществами перед классической пирометаллургией. К ним относятся: практически полное извлечение необходимого содержимого, более высокая скорость реакции.

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами

Получение металлов из руд — задача металлургии.

Металлургия

— это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

В соответствии с этим существуют следующие способы получения металлов:

Поделитесь в социальных сетях:FacebookX
Напишите комментарий